1. Всем пользователям необходимо проверить работоспособность своего электронного почтового адреса. Для этого на, указанный в вашем профиле электронный адрес, в период с 14 по 18 июня, отправлено письмо. Вам необходимо проверить свою почту, возможно папку "спам". Если там есть письмо от нас, то можете не беспокоиться, в противном случае необходимо либо изменить адрес электронной почты в настройках профиля , либо если у вас электронная почта от компании "Интерсвязь" (@is74.ru) вы им долго не пользовались и хотите им пользоваться, позвоните в СТП по телефону 247-9-555 для активации вашего адреса электронной почты.
    Скрыть объявление

Предлагаю здесь выкладывать последние открытия в физике.

Тема в разделе "Архив", создана пользователем lotar, 20 дек 2007.

?

Нужны ли последние данные на данную тематику?

  1. да

    91,2%
  2. нет

    4,9%
  3. затрудняюсь ответить

    10,8%
Можно выбрать сразу несколько вариантов.
  1. lotar

    lotar Ословед

    Репутация:
    175
    lotar, 20 дек 2007
    В этом архиве лежат статьи из журнала УФН.
     
    #1
  2. lotar

    lotar Ословед

    Репутация:
    175
    lotar, 7 июн 2008
    Ученым хотят сорвать эксперимент века

    Ученым хотят сорвать эксперимент века

    Может ли предстоящий запуск крупнейшего в мире ускорителя частиц, прозванного Машиной Большого Взрыва, вызвать глобальный катаклизм, способный уничтожить нашу планету? Именно такие опасения высказывают некоторые критики создания в Швейцарии Большого адронного коллайдера (LHC), с помощью которого ученые намерены провести беспрецедентный эксперимент: протоны раскрутят почти до скорости света, то есть попытаются воссоздать условия, которые сложились во время "Большого взрыва", когда, как полагают, и была создана Вселенная.

    Критики этого эксперимента подали иск против правительства США и Европейской организации ядерных исследований в Женеве, известной как CERN. Иск подан буквально накануне эксперимента – коллайдер должны запустить в июле 2008 года – с явной целью, если не полностью сорвать опыт, то хотя бы оттянуть его проведение.

    Co-истцы Вальтера Вагнера и Луис Санчо опасаются, что, когда коллайдер достигнет полной мощности, она может создать "черные дыры", которые начнут
    расти и, в конце концов, поглотят Землю.

    Черной дырой принято называть область пространства-времени, в которой гравитационное поле столь сильно, что ни один объект (и даже излучение) не может вырваться из нее. Ученые еще не знают точную причину возникновения и существования коллапсаров или "застывших звезд" (так по иному называют черные дыры), космологических объектов, содержащих экзотические формы материи.

    Физики CERNа и аналогичных научно-исследовательских учреждений отклонили исковые требования, назвав их нонсенсом. Но Вагнер, бывший сотрудник агентства по ядерной безопасности(он утверждает, что изучал физику более 30 лет), хочет отложить реализацию проекта на четыре месяца для более тщательного изучения условий безопасности.

    Помимо швейцарского института CERN ответчиками по данному "делу" выступает лаборатория Fermilab из штата Иллинойс, США, а также министерство энергетики США и Национальный научный фонд.

    Министерство юстиции отказывается комментировать этот иск, официальный ответ ожидается в следующем месяце.

    В настоящее время крупнейшим в мире коллайдером располагает Fermilab, его диаметр составляет около четырех миль. Но новый ускоритель частиц, созданный под землей на глубине 100 метров на границе между Францией и Швейцарией, достигает в окружности 17 миль, его мощность в семь раз превосходит американский ускоритель Tevatron. Энергетический луч, полученный на швейцарском коллайдере, способен будет почти мгновенно уничтожить небольшой автомобиль.

    С помощью этого эксперимента ученые хотят обнаружить частицу "Бозон Хиггса", именуемую еще "частицей Бога", потому что ее искали многие, но никто ее ни разу не видел, несмотря на то, что британский ученый Питер Хиггс с помощью научной дедукции доказал ее существование еще в 1964 году.
     
    #41
  3. lotar

    lotar Ословед

    Репутация:
    175
    lotar, 7 июн 2008
    Первое применение лазерных ускорителей будет медицинским

    Первое применение лазерных ускорителей будет медицинским

    02.06.2008


    Доза облучения, получаемая тканями на разной глубине при облучении рентгеновскими лучами и пучком ионов (изображение с сайта www.gsi.de)



    Протонная терапия опухолей, остающаяся пока дорогой и мало распространенной процедурой, станет намного доступнее, когда в дело вступят лазерные ускорители протонов. Недавно появилось сразу несколько работ, приближающих эту эпоху.

    Ускорители элементарных частиц используются не только в фундаментальной науке, но и в медицине. Одно из их применений в этой области — протонная терапия онкозаболеваний, то есть радиационное воздействие на опухоль с помощью пучка протонов (а иногда даже и тяжелых ионов).

    Суть методики заключается в следующем. Протоны разгоняют в ускорителе и тонким пучком направляют на опухоль пациента. Проходя сквозь вещество, протоны постепенно теряют свою энергию и останавливаются, причем их энерговыделение резко усиливается на последних миллиметрах пути. Зная глубину залегания опухоли, можно подобрать энергию пучка так, чтобы эти последние миллиметры попали как раз внутрь нее. В результате опухоль получает гораздо большую дозу облучения, чем окружающие ее здоровые ткани, что выгодно отличает эту методику от обычной радиотерапии рентгеновскими лучами.

    Несмотря на то что идея протонной терапии была предложена очень давно, она до сих пор не получила широкого распространения. Ее применяют сейчас около 30 клиник и исследовательских центров по всему миру, а полное число пациентов, подвергнутых этой процедуре, составляет к настоящему моменту лишь 50 тысяч.

    Главная причина такой ситуации — дороговизна аппаратуры. Это не только стоимость самого ускорителя протонов, но и оборудование специального ускорительного зала размером в десятки метров с высокой степенью радиационной защиты, а также создание линии транспортировки протонного пучка из ускорителя в операционный кабинет — опять же, в соответствие со всеми требованиями безопасности. В результате только достаточно богатые клиники или исследовательские центры могут раскошелиться на такую установку.

    Несколько лет назад вдруг выяснилось, что эту ситуацию можно резко изменить. Исследования по физике лазеров (казалось бы, совсем другой раздел физики!) привели к идее лазерного ускорителя протонов, и сразу стало понято, что его можно будет применить и для протонной терапии.


    Схема получения и ускорения ионов в фокусе мощного лазерного луча (изображение из статьи Mike Dunne. Laser-Driven Particle Accelerators // Science. V. 312. P. 374–376



    Суть методики такова. Короткий, но очень мощный лазерный импульс, сфокусированный на тонкую мишень, порождает в фокусе маленькое облачко плазмы, а затем буквально сдувает его вперед. Далее с помощью магнитного поля протоны в этом потоке можно отделить от других ядер и от электронов. Так повторяется раз за разом (каждый раз под лазерный импульс подставляется новый участок мишени), и на выходе получается импульсный протонный пучок. Самое важное, что ускорение частиц до энергий в десятки МэВ происходит на длине всего в несколько микрон — то есть в миллион раз эффективнее, чем в обычных ускорителях!

    Лазерная технология ускорения позволяет одним махом избавиться от ряда проблем, сопутствующих обычным ускорителям. Во-первых, из дорогого оборудования остается только мощный лазер, который всё равно дешевле ускорителя. Во-вторых, он гораздо компактнее и не требует таких мер безопасности, как ускоритель. Система подачи луча от лазера к пациенту гораздо проще — ведь луч света легко направлять зеркалами и фокусировать линзами, а пучок протонов тут появляется только на последней стадии. Наконец, у этой методики есть и функциональные преимущества по сравнению с ускорительной, например легкость перестройки энергии и интенсивности протонного пучка.


    Вверху: схема установки для протонной терапии с помощью лазерного ускорения. Внизу: для сравнения приведена схема центра протонной терапии с обычным ускорителем (изображения из статьи arXiv:0804.3826 и с сайта www.proton-therapy.org)



    Впрочем, всё это остается пока в перспективе. Для практической реализации этой методики требуется сначала решить ряд довольно сложных технических проблем (см. например небольшой обзор [1]). Однако в последние месяцы появилось сразу несколько работ, делающих существенные шаги на пути к их решению. Вот некоторые из трудностей и предложенные в этих статьях попытки их решения.

    Во-первых, для воздействия на глубоко залегающие опухоли требуются протоны с энергией 200–250 МэВ. Максимальная энергия протонов, достигнутая в эксперименте с лазерным ускорением, пока составляет 58 МэВ, что отвечает глубине в несколько сантиметров. Хотя этого уже, в принципе, достаточно для воздействия на близко лежащие опухоли (например, в носоглотке или окологлазной области), для полноценного применения методики энергию протонов надо повысить.

    Максимальная энергия протонов зависит от интенсивности света в фокусе лазерного импульса, которая определяется как пиковой мощностью в лазерном импульсе, так и тем, насколько плотно он сфокусирован в поперечном направлении. Ориентиром интенсивности для достижения нужных энергий протонов считается значение 1022 Вт/см2, для чего требуются лазеры с пиковой мощностью порядка 1 ПВт (петаватт = 1015 Вт) и хорошая фокусировка (в пятно размером в длину волны или меньше).

    Впрочем, здесь прогресс идет достаточно быстро. Например, лазер Hercules в исследовательском центре CUOS (Center for Ultrafast Optical Science) при Мичиганском университете уже достиг 300 ТВт (тераватт) и планирует достичь 500 ТВт к концу 2008 года. Он хорошо фокусируется и кроме того выдает очень «высококонтрастные» импульсы (интенсивность света между импульсами на 11 порядков слабее самого импульса). Моделирование, проведенное в недавней работе [2] физиками из ФИАНа и Мичиганского университета специально для этого лазера, подтвердило, что 500 ТВт уже хватит для получения протонов терапевтической энергии.

    Во-вторых, требуется не только достаточная энергия, но и достаточное количество протонов. Здесь ориентиром является число 1010 протонов в секунду. Расчеты показывают, что лазер Hercules с пиковой мощностью 500 ТВт сможет ускорять по 4·108 протонов за одну вспышку. Значит, для достижения нужного потока протонов потребуется 25 вспышек в секунду. Для достижения такой частоты экспериментаторам, правда, придется потрудиться — пока что Hercules выдает одну вспышку в 10 секунд.

    Впрочем, не исключено, что требования к лазерам смягчатся, если будет реализована идея адиабатического (то есть не мгновенного) ускорения, предложенная в работе [3]. В этой схеме мощность света в момент прихода лазерного импульса на пленку нарастает чуть плавнее, чем обычно, и, как показывает моделирование, это позволяет более эффективно преобразовывать энергию световой вспышки в поток протонов.

    Еще одно серьезное препятствие заключается в том, что полученные протоны имеют слишком большой разброс по энергии. Для того чтобы «попасть» протонами строго на нужную глубину, этот разброс необходимо уменьшить. Его пока удалось снизить примерно до 25%, но сейчас активно изучаются различные схемы, позволяющие еще больше уменьшить это число. Этого можно добиться как с помощью специально подготовленной мишени ([2], [3]), так и с помощью специальной настройки параметров лазерного импульса ([4], [5]).

    Наконец, отдельно стоит упомянуть работу [6], в которой описывается новый режим ускорения протонов — ускорение прямым давлением света. Моделирование, проведенное авторами, показывает, что уже при относительно скромной мощности (1021 Вт/см2) можно получить узконаправленный протонный пучок с энергией вплоть до 500 МэВ с очень маленьким разбросом по энергии — как раз то, что нужно для протонной терапии.

    Теперь слово за экспериментом. Вполне вероятно, что в ближайшие годы будут реализованы по крайней мере некоторые из этих идей, а уж как скоро эта методика будет взята на вооружение медиками и как широко она распространится, покажет практика.

    Интересно в этой истории еще и то, что изначально поиск новых методов ускорения частиц был продиктован чисто научными, а не практическими соображениями. Высокая стоимость коллайдеров нового поколения, таких как LHC или некоторые будущие проекты, вызвана их огромными размерами, а они необходимы из-за невозможности увеличить темп ускорения частиц (то есть сколько МэВ на метр пройденного пути они приобретают). Поэтому физики давно уже ищут новые механизмы разгона частиц, и лазерная (а также лазерно-плазменная) технология возникла в результате этого поиска. Однако похоже, что первое применение эта методика найдет именно в медицине.
     
    #42
  4. lotar

    lotar Ословед

    Репутация:
    175
    lotar, 7 июн 2008
    Многоликая Вселенная

    Многоликая Вселенная
    Андрей Дмитриевич Линде,
    Стэнфордский университет (США), профессор

    Ответы на вопросы после лекции

    Скачать видеозапись лекции: часть 1 (95 Mb), часть 2 (94 Mb), ответы на вопросы (95 Mb)


    Андрей Дмитриевич Линде. 10 июня 2007 года, Москва, ФИАН (фото: фонд «Династия»)



    Во-первых, я должен сказать, что я немножечко робею. Я в этом зале выступал много раз. Сначала я здесь учился, и когда всё это началось, я был студентом Московского университета, приходил сюда на семинары, в ФИАН. И каждый раз я сидел на этих семинарах, мучительно, мне было жутко интересно, а также невероятно сложно. Всё то, что говорилось, я понимал, ну, примерно на десять процентов. Я думал, что, наверное, я, ну, идиот такой, ничего больше не понимаю, физика из меня не получится... Но уж больно хотелось, продолжал ходить. Эти десять процентов понимания у меня сохранились до сих пор: в основном на семинарах, на которые я хожу, я понимаю примерно десять процентов. А потом я сделал впервые свой доклад здесь. Я поглядел на лица людей, и у меня было впечатление, что они тоже понимают на десять процентов. И тогда у меня исчез комплекс неполноценности, отчасти по крайней мере. Немного, наверное, всё равно остался... Я зачем это говорю? Тематика довольно сложная. И если десять процентов будет понятно, то, значит, вы на правильном пути.

    То, о чём я сейчас буду говорить, связано с теорией инфляционной Вселенной. Инфляционная Вселенная, по-русски это называлось «раздувающаяся Вселенная», но стандартное название «инфляционная». В последнее время возник такой термин — «Multi-verse». Это термин, заменяющий слово «Universe». Значит, вместо одной Вселенной — много вселенных сразу в одной. Ну вот по-русски, пожалуй, наиболее адекватный перевод — это «многоликая Вселенная». И про это я сейчас буду говорить.





    Но сначала общее введение о космологии вообще. Откуда взялась инфляционная космология (зачем она понадобилась)? Что было до нее (теория Большого взрыва). Сначала такие биографические данные. Возраст Вселенной, согласно последним наблюдаемым данным... Вот когда я говорю про возраст, каждый раз я говорю и где-то в душе ставлю маленькую запятую, что я должен к этому вернуться и потом сказать, что на самом деле Вселенная может быть бесконечно старая. Ну вот то, что люди называют возрастом Вселенной, это примерно 13,7 миллиарда лет с точностью до... пожалуй, лучше, чем 10%. Сейчас люди знают это достаточно хорошо. Размер наблюдаемой части Вселенной... Что значит «наблюдаемой»? Ну вот, свет путешествовал к нам 13,7 миллиарда лет, значит надо умножить это на скорость света и получится расстояние, на котором мы сейчас видим вещи. Говорю я это, а в душе сразу опять ставится запятая: на самом деле это не так. Потому что мы видим в несколько раз дальше, чем это, потому что те объекты, которые послали к нам свет 13,7 миллиарда лет назад, они сейчас от нас находятся дальше. И мы от них видим свет-то, а они дальше, поэтому в действительности мы видим больше, чем скорость света умножить на время существования Вселенной.

    Дальше. Средняя плотность вещества — примерно 10–29 г/см3. Очень мало. Но мы живем в том месте, где оно сконденсировалось... Вес наблюдаемой части Вселенной — больше 1050 тонн. Вес в момент рождения... а вот это вот самое интересное. Когда Вселенная родилась, если отсчитывать прямо от момента Большого взрыва, совсем вот во время t = 0, то ее вес должен был быть бесконечным. Если отсчитывать от какого-то другого момента... он называется планковский. Планковский момент — это момент 10 в степени минус... Ну вот, иногда все-таки буду писать на доске... Значит, t планковское — это примерно 10 в минус сорок третьей секунд (tp ~ 10–43 с). Это момент, начиная с которого впервые мы можем Вселенную рассматривать в терминах нормального пространства-времени, потому что если мы возьмем объекты на временах меньше, чем это, или на расстояниях меньше, чем планковское расстояние (это 10–33 см), — если мы возьмем меньшее расстояние, то на меньших расстояниях пространство-время так сильно флуктуирует, что померить их будет нельзя: линейки гнутся, часы вращаются, как-то нехорошо... Поэтому нормальное рассмотрение начинается с этого момента. И в этот момент Вселенная имела вес необычайно большой. Я вам скажу, какой — немножечко погодя. А то, что сделала инфляционная Вселенная: мы научились объяснять, как можно всю Вселенную получить из меньше чем одного миллиграмма вещества. Всё, что мы сейчас видим...





    И давайте дальше, предварительные данные. Простейшие модели Вселенной, то, что вошло в учебники, — это три возможных модели Фридмана. Первая — это замкнутая Вселенная, [вторая] — открытая Вселенная, и [третья] — плоская Вселенная. Эти картинки — тоже примерные только картинки. Смысл состоит в следующем.

    Вот простейший вариант — плоская Вселенная. Геометрия плоской Вселенной такая же, как геометрия плоского стола, то есть параллельные линии остаются параллельными и нигде не пересекаются. В чём отличие, чем отличается от плоского стола? Тем, что если у меня есть две параллельные линии... например, пошло два луча света, параллельные друг другу... Вселенная расширяется, поэтому, хотя они параллельные, два луча света, они удаляются друг от друга за счет того, что вся Вселенная расширяется. Поэтому сказать так — что геометрия плоского стола, — это не до конца правильно. Вселенная является кривой в четырехмерном смысле. В трехмерном смысле она является плоской.

    Замкнутая Вселенная похожа геометрическими свойствами на свойства поверхности сферы. То есть если у меня есть две параллельные линии на экваторе, то они пересекаются на северном и южном полюсе. Параллельные линии могут пересекаться. А мы как бы живем на поверхности сферы, как такая блоха, которая ползет по глобусу. Но тоже аналогия поверхностная — в двух смыслах. Наша Вселенная, она как бы трехмерная сфера в четырехмерном пространстве. Приходится картинки рисовать, а в действительности только аналогии... И, кроме того, она расширяется. Если мы захотим пройти от экватора до северного полюса, то нам времени не хватит — такая Вселенная может сколлапсировать, или мы не дойдем, потому что она слишком быстро расширяется.

    Открытая Вселенная похожа по своим свойствам на свойства гиперболоида, то есть если у горловины гиперболоида я пущу две параллельные прямые, то они начнут расходиться и никогда не встретятся.

    Вот три основных модели. Их предложил Фридман довольно давно, в 20-е годы прошлого столетия, и Эйнштейн их очень не любил. Не любил, потому что это всё как бы противоречило той идеологии, на которой были воспитаны люди того времени. Идеология состояла в том, что Вселенная — это ведь система координат, ну и координаты-то, они не расширяются, это просто сетка. Люди всегда считали в Европе — сначала считали, — что Вселенная конечна и статична. Конечна, потому что Бог бесконечен, а Вселенная меньше Бога, поэтому она должна быть конечна, а статична... ну, потому что, что же ей делать-то — система координат... Потом они отказались от первого предположения, сказав, что Бог не потеряет много, если он один из своих атрибутов отдаст Вселенной и сделает ее бесконечной, но всё равно считалось, что она статична.





    Расширение Вселенной — это было странное такое свойство, против которого долго боролись, до тех пор, пока не увидели, что она на самом деле расширяется. Значит, то, что произошло за последние несколько лет, экспериментально — не в теоретической физике, а в экспериментальной космологии. Выяснилось две вещи. Мы начнем со второго. В 1998 году люди увидели, что Вселенная сейчас расширяется с ускорением. Что означает с ускорением? Ну, вот она расширяется с какой-то скоростью. В действительности, это немножко неправильно...

    Значит, вот a — это масштаб Вселенной, a с точкой (å) — это скорость расширения Вселенной, a с точкой разделить на a (å/a) — это... Вот a, например, расстояние от одной галактики до другой, назовем его буквой a. А это (å/a) — скорость, с которой галактики убегают друг от друга. Вот эта вещь (å/a = H) есть хаббловская постоянная, она на самом деле зависит от времени. Если эта вещь убывает со временем, это не означает, что Вселенная перестает расширяться. Расширение означает, что a с точкой больше нуля (å > 0). А вот то, что люди обнаружили сейчас, — что сейчас этот режим асимптотически приближается к константе (å/a = H → const), то есть не только a с точкой положительно, но вот это их отношение, оно устремляется к константе. И если это дифференциальное уравнение разрешить, окажется, что масштабный фактор Вселенной ведет себя асимптотически приблизительно так: a ~ eHt — Вселенная будет экспоненциально расширяться, и этого не очень-то ожидали раньше. То есть это есть ускоренное расширение Вселенной, а раньше, по стандартной теории, выходило, что Вселенная должна расширяться с замедлением.

    Вот это открытие последних девяти лет. Сначала люди думали, что, ну, где-нибудь экспериментальная ошибка, еще что-то, потом стали называть их разными словами — космологическая постоянная, энергия вакуума, темная энергия... Значит, вот это то, что произошло недавно. Теория о которой я сейчас буду говорить, — это инфляционная космология. Она предполагает (и сейчас всё больше кажется, что, наверное, это было правильное предположение, мы еще всё равно в точности не знаем — есть конкурирующие теории, хотя они мне там и не нравятся, но, значит, это точки зрения) — но кажется, что это вот правильная вещь, — что в ранней Вселенной, по-видимому, Вселенная тоже расширялась ускоренно. Причем с гораздо большим ускорением, чем то, с каким она расширяется сейчас, — на много десятков порядков большим ускорением. Вот эти два открытия... по-видимому, их надо попытаться интерпретировать как-то.





    Значит, картинки, которые при этом часто рисуют... Вот (пока что не смотрите на эту красную картинку) стандартная, из учебника. Если Вселенная замкнутая — то есть геометрия похожа на геометрию сферы, поверхности сферы, — то она возникает из сингулярности и исчезает в сингулярность, у нее конечное время существования. Если она плоская, то она возникает из сингулярности и расширяется до бесконечности. Если она открытая, то она тоже продолжает двигаться с постоянной скоростью.

    То, что выяснилось, то, что я сейчас сказал насчет этой темной энергии, космологической постоянной, ускорения Вселенной, — выяснилось, что она ведет себя так. И выяснилось, что она ведет себя так, какая бы она ни была — открытая, закрытая, плоская... Вообще в таких случаях вот такая вот вещь. Сейчас, если мы открываем учебники по астрономии, в основном они всё еще публикуют вот эти вот три картинки, и это то, на чём мы были воспитаны в течение последних лет. Поэтому существование вот этой последней — это было замечательное открытие, и оно связано с тем, что люди поверили, что в вакууме существует ненулевая плотность энергии, в пустоте. Она очень маленькая: она такого же порядка, как плотность энергии вещества во Вселенной, — 10–29 г/см3. И вот когда я иногда представляю этих людей, я говорю: «Посмотрите, вот это люди, которые померили энергию... ничего». Вот так, вот эта вот красная черта.

    Общая картина распределения энергии... Когда я говорю «энергия», или говорю «материя», «вещество», я подразумеваю одно и то же, потому что, как мы знаем, E равняется mc квадрат (E = mc2), то есть эти две вещи пропорциональны друг другу... Есть темная энергия...





    Полный бюджет энергии и материи во Вселенной представлен таким вот пирогом: 74% примерно составляет темная энергия. Что это такое, никто не знает. Либо это энергия вакуума, либо это энергия медленно меняющегося однородно распределенного специального скалярного поля — об этом дальше. Ну, вот это отдельная часть, она не комкуется. Что я под этим подразумеваю? Она не сбивается в галактики. Темная материя (примерно 22% всего бюджета) — что-то такое, что комкуется, но чего мы не видим. Что-то, что может сбиваться в Галактики, но чего мы не видим, не светится. И примерно 4–5% — это «нормальная» материя. Вот бюджет всей нашей материи.

    И есть там мировые загадки. Почему они одного и того же порядка, эти величины, и почему так много все-таки такой энергии сидит в пустоте? Как же это вообще так оказалось, что мы, такие гордые, думали, что всё такого типа, как мы, а нам-то и дали всего четыре процента... Так вот...





    Теперь — инфляционная Вселенная. Пока что идет просто справка, чтобы было понятно, о чём я говорю, а уже потом начнется дело. Инфляция — это вот что. Вот то, что было на предыдущих картинках, что Вселенная началась и начала расширяться, и, помните, дуга была выгнута вот в такую сторону... Вот если я вернусь назад, покажу вам вот это всё... вот видите, все дуги — они были выгнуты вот так. Инфляция — это кусок траектории, который существовал как бы до Большого взрыва в некотором смысле, до того, как дуга начала прогибаться так. Это время, когда Вселенная расширялась экспоненциально и Вселенная расширялась с ускорением. Она изначально могла иметь очень маленький размер, а потом была стадия очень быстрого расширения, потом она становилась горячей, и потом происходило всё то, что в учебниках было написано: что Вселенная была горячая, взорвалась, как горячий шар, — вот это всё было после стадии инфляции, а во время инфляции частиц могло не быть вообще. Вот такая справка.





    Значит, зачем всё это понадобилось? А затем, что люди смотрели 25 лет назад — немножко больше уже — на теорию Большого взрыва и задавали разные вопросы. Я перечислю вопросы.

    Что было, когда ничего не было? Ясно, что вопрос бессмысленный, чего же его задавать... В учебнике Ландау и Лифшица написано, что решения уравнений Эйнштейна нельзя продолжить в области отрицательного времени, поэтому бессмысленно спрашивать, что было до этого. Бессмысленно, но все люди всё равно спрашивали.

    Почему Вселенная однородна и изотропна? Вопрос: почему, действительно? Что значит однородна? Ну вот, если мы рядом с нами посмотрим, наша Галактика — она не однородна. Рядом с нами Солнечная система — большие неоднородности. Но если мы посмотрим в масштабах всей наблюдаемой нами сейчас части Вселенной, вот эти 13 миллиардов световых лет, то в среднем справа и слева от нас Вселенная имеет ту же самую плотность, с точностью примерно до одной десятитысячной и даже лучше, чем это. Значит, кто-то ее отполировал, почему она такая однородная? И в начале прошлого века на это отвечали следующим образом. Есть такая вещь, которая называется «космологический принцип»: что Вселенная должна быть однородна.

    Я любил шутить, что люди, у которых нет хороших идей, у них иногда есть принципы. Потом я перестал это делать, потому что оказалось, что этот принцип был введен, в частности, Альбертом Эйнштейном. Просто в то время люди не знали, и до сих пор во многих книжках по астрономии люди обсуждают космологический принцип — что Вселенная должна быть однородна, потому что... ну, вот она однородна!

    С другой стороны, мы знаем, что принципы — они уж должны быть тогда полностью правильные. Там, не знаю, человек, который берет маленькие взятки, его нельзя назвать человеком принципов. Наша Вселенная была немножко неоднородной — в ней есть галактики, они необходимы для нас, значит откуда-то мы должны понять, откуда, галактики берутся.

    Почему все части Вселенной стали расширяться одновременно? Та часть — Вселенная, и та часть — Вселенная, они друг с другом не говорили, когда Вселенная только что начала расширяться. Несмотря на то, что размер Вселенной был маленький, для того чтобы одна часть Вселенной узнала о том, что другая начала расширяться, надо, чтобы человек, который живет здесь, — ну, воображаемый человек — узнал бы о том, что эта часть начала расширяться. А для этого он должен бы был получить сигнал от того человека. А для этого потребовалось бы время, так что люди никак не могли договориться, особенно в бесконечной Вселенной, что, ура, надо начать расширяться, уже позволили... Значит, это почему все части Вселенной начали расширяться одновременно...

    Почему Вселенная плоская? То, что сейчас экспериментально известно, — что Вселенная почти плоская, то есть параллельные линии, они не пересекаются в наблюдаемой части Вселенной. Значит, почему Вселенная такая плоская? Нас в школе учат, что параллельные линии не пересекаются, а в университете говорится, что Вселенная может быть замкнутая, и они могут пересекаться. Так почему Эвклид был прав? Не знаю...

    Почему во Вселенной такое огромное количество элементарных частиц? В наблюдаемой нами части Вселенной больше чем 1087 элементарных частиц. Стандартный ответ на это состоял в том, что, ну, Вселенная — она же большая, вот поэтому... А почему она такая большая? И я иногда аккумулирую это в таком виде: почему так много людей пришло на лекцию? — а потому, что так много людей в Москве... — а почему так много людей в Москве? — а Москва только часть России, а в России много людей, часть пришла на лекцию... — а почему так много людей в России, вот в Китае еще больше? А вообще говоря, мы только на одной планете живем, а у нас много планет в Солнечной системе, а сейчас еще больше планет отыскивают еще во Вселенной, а вы знаете, что в нашей Галактике 1011 звезд, и поэтому где-то планеты, где-то есть люди, часть из них пришла на лекцию... Почему в нашей Галактике так много звезд? А вы знаете, сколько галактик в нашей части Вселенной? Примерно 1011–1012 галактик, и в каждой из них 1011 звезд, вокруг них вращаются планеты, и часть людей пришла на лекцию. А почему у нас так много галактик? Ну, потому что Вселенная же большая... Значит... и вот здесь мы и кончаем.

    А если взять, например, Вселенную — типичную замкнутую Вселенную, у которой был бы единственный типичный размер, который имеется в общей теории относительности вместе с квантовой механикой, — 10–33 см, начальный размер. Значит, сжать вещество до самой предельной плотности, которая только возможна (это так называемая планковская плотность, ρ планковское), — это примерно 1094 г/см3... Почему предельная? Она не в том смысле предельная, что дальше нельзя, а в том смысле, что если сжать материю до такой плотности, то Вселенная начинает так флуктуировать, что ее нормальным способом описать невозможно. Значит, вот если взять и сжать материю до самой большой плотности, засунуть в нее естественного размера замкнутую Вселенную и посчитать количество элементарных частиц там, то окажется, что в ней есть одна элементарная частица. Может быть, деcять элементарных частиц. А нам надо 1087. Поэтому это реальная проблема — откуда, почему так много элементарных частиц?





    Дело этим не кончается. Откуда взялась вся энергия во Вселенной? Вот раньше я даже это так для себя не сформулировал, до тех пор, пока меня не пригласили в Швецию на какой-то нобелевский симпозиум, посвященный энергии... то есть туда собрались люди, которые занимаются нефтедобычей, еще чего-то. И мне дали там открывать эту конференцию, и первый доклад... Я никак не мог понять, чего они от меня хотят? Я нефтедобычей не занимаюсь, солнечной энергией и энергией ветра не занимаюсь, что я про энергию вообще скажу? Ну, и начал я тогда доклад с того, что сказал: вы знаете, откуда энергия-то взялась во Вселенной? Знаете, сколько у нас энергии? Давайте посчитаем.

    Энергия вещества во Вселенной не сохраняется. Первый парадокс. Вот мы знаем, что энергия сохраняется, — а вот это не правильно. Потому что, если мы возьмем, например, загоним газ в ящик и дадим ящику расширяться... Вот ящик — это наша Вселенная, дадим ящику расширяться. Газ — он давление оказывает на стенки ящика. И когда ящик расширяется, этот газ совершает работу над стенками ящика, и поэтому когда ящик расширяется, газ энергию свою теряет. Потому что он работу совершает, всё правильно, баланс энергии есть. Но только факт-то состоит в том, что во время расширения Вселенной полная энергия газа уменьшается. Потому что есть стандартное уравнение: изменение энергии равняется минус давление умножить на изменение объема (dE = –PdV). Объем-то Вселенной растет, давление-то положительно, поэтому энергия уменьшается.

    Вот во всех моделях Вселенной, нормальных, тех, которые были ассоциированы с теорией Большого взрыва, полная энергия Вселенной уменьшалась. Если сейчас 1050 т, то сколько же было в начале? Потому что энергия-то только тратилась. Значит, тогда в начале должно было быть больше. Кто-то должен был сделать эту Вселенную с гораздо большей энергией, чем сейчас. С другой стороны, что-то же должно сохраняться. А куда тратится эта энергия во время расширения Вселенной? Она тратится на то, что размер Вселенной меняется, что Вселенная расширяется с некоторой скоростью. Есть некоторая энергия, которая прячется в геометрии Вселенной. Есть энергия, которая связана с гравитацией. И вот полная сумма энергии вещества и гравитационной энергии, она сохраняется. Но только если посчитать полную сумму. Есть разные способы счета — и опять там запятая некая ставится, — но при некотором способе счета полная сумма энергии вещества и гравитации, она просто равна нулю. То есть энергия материи компенсируется энергией гравитационного взаимодействия, поэтому есть ноль. И поэтому, да, она началась с нуля, она нулем и кончится, всё сохраняется, но только этот закон сохранения, он не очень полезен для нас. Он не объясняет нам, откуда же такая огромная энергия взялась. Значит, сколько?





    Вот согласно теории Большого взрыва, полная масса вещества в начале, когда Вселенная родилась, должна была превосходить 1080 т. Это уже много. Это совсем много... А если бы я это всё отчислял даже прямо от сингулярности, то просто во Вселенной должно было быть бесконечное количество вещества. И тогда возникает вопрос: откуда же кто-то нам дал это бесконечное количество вещества, если до момента возникновения Вселенной, ну, ничего не было? Сначала ничего не было, а потом вдруг стало, и так много, что даже как-то немножко странно. То есть кто бы это мог сделать?.. А физики так вопрос формулировать не хотели, ну и сейчас не хотят.





    Поэтому, может быть, хорошо, что нашлась теория, которая позволяет, по крайней мере в принципе, объяснить, как можно было сделать всё это, исходя из кусочка Вселенной с изначальным количеством материи меньше одного миллиграмма. Ну вот, когда я про это говорю, я думаю, что бы нормальный человек подумал, если бы такую вещь сказать давно, или если бы не писать уравнений при этом, и так далее...

    Я помню, когда меня здесь проводили на старшего научного сотрудника, вызвали меня и начали меня спрашивать: «А чем вы занимаетесь?» А я им начал говорить, что вот, занимаюсь я, в частности, тем, что в разных частях Вселенной может оказаться так, что законы физики могут быть разные: в части есть, там, электромагнитное взаимодействие, в части — нет... Они мне сказали: «Ну, это уж слишком!» Но старшего научного все-таки дали. Вот это и есть та самая теория многоликой Вселенной, о которой я вам буду говорить.





    Вот мы переходим к делу, к теории инфляционной космологии. Сначала первая простейшая модель. Простейшая модель выглядит следующим образом. Вот у вас есть некое скалярное поле, у которого энергия пропорциональна квадрату скалярного поля. Первые простейшие слова — и уже здесь возникает вопрос: что такое скалярное поле? Часть людей знает, часть людей не знает. Часть людей знает, что в Швейцарии сейчас строится огромный ускоритель, для того чтобы найти хиггсовскую частицу. Хиггсовская частица — это частица, которая является как бы квантом возбуждения специального типа скалярного поля. То есть люди используют эти поля уже давно, больше тридцати лет. Но смысл интуитивный легче всего понять с помощью аналогии. Вот здесь вот есть 220 вольт в сети. Если бы было просто 220 вольт и не было нуля, всю Вселенную заполнило бы 220 вольт, то никакого тока бы не было, ничего бы никуда не текло, потому что это было бы просто другое вакуумное состояние. В Америке 110 вольт. То же самое — если было бы просто 110 вольт, ничего бы не текло... Если вы возьметесь одной рукой за одну сторону, другой рукой за другую, то вас бы тут же убило, потому что разница потенциалов — это то, что... Я должен перестать...

    Хорошо. Значит, так вот, постоянное скалярное поле — это аналог такого же поля. Это не точная аналогия, но примерная аналогия. Что такое векторное поле? Векторное поле — например, электромагнитное. У него имеется величина и направление. Что такое скалярное поле? У него имеется величина, а направления нет. Вот и вся разница, то есть оно гораздо проще, чем электромагнитное поле. У него нет направления, оно является лоренцовским скаляром. Лоренцовский скаляр — это означает следующее. Если вы побежите относительно него, вы не почувствуете, что вы бежите: ничего не изменилось. Если вы повернетесь, ничего не изменится тоже, вы не почувствуете, что вы поворачиваетесь. Выглядит как вакуум, если оно не движется, если оно постоянно. Но только это специальный вакуум, потому что у него может быть потенциальная энергия. Это первое свойство его. И во-вторых, если у вас в разных частях Вселенной разный вакуум, то там также разный вес элементарных частиц, разные свойства, поэтому от того, есть или нет это скалярное поле, а) зависят свойства элементарных частиц и б) зависит плотность энергии вакуума во Вселенной, так что это, в принципе, важная вещь. И вот простейшая теория, у которой энергия этого скалярного поля пропорциональна его квадрату.





    Давайте посмотрим на уравнения. Я сейчас никакие уравнения решать не буду, а показывать их буду, так что не надо бояться... Первое — это немного упрощенное уравнение Эйнштейна, которое говорит: вот это скорость расширения Вселенной поделить на размер, это есть Хаббловская постоянная в квадрате, и она пропорциональна плотности энергии вещества во Вселенной. А я сейчас захочу пренебречь всем — там, газом, чем угодно... оставить только скалярное поле. И здесь надо было бы написать гравитационную постоянную, там еще восемь пи на три...

    Сейчас забудем про гравитационную постоянную. Люди, которые занимаются этой наукой, они говорят: ну, возьмем гравитационную постоянную равную единице, скорость света, равную единице, постоянную Планка, равную единице, а потом, когда всё решим, мы это обратно вставим в решение, чтобы проще было...

    Значит, вот это чуть-чуть упрощенное уравнение Эйнштейна, я оттуда еще выбросил пару членов, которые сами оттуда выбрасываются, после того как Вселенную начнет быстро сдувать. Это уравнение движения для скалярного поля. Не глядите сейчас на этот член. Это есть ускорение скалярного поля, а это показывает ту силу, с которой поле хочет устремиться в свой минимум энергии. И, для того чтобы было понятно, сравните это с уравнением для гармонического осциллятора. Опять, не смотрите на этот член. Это есть ускорение гармонического осциллятора, пропорциональное возвращающей силе. То есть сила, которая тащит поле осциллятора в точку x = 0, а это его ускорение. И мы знаем, чем дело кончается. Осциллятор так вот осциллирует. А если мы добавим такой член, x с точкой. Это скорость движения осциллятора. То есть это, если его перенести вот в эту сторону, будет понятно, что это как бы сила, которая не пускает осциллятор двигаться быстро. Это примерно как если вы засунете маятник в воду, то вода будет препятствовать осцилляции, и он будет осциллировать всё медленнее и медленнее. Как бы сила трения или вязкости.

    Вот оказывается, что во Вселенной тоже имеется аналогичный член, который описывает уравнение для скалярного поля. Уравнение-то выглядит точно так же. И этот член похож на этот. Вот оказывается, что во Вселенной эффект трения возникает, если Вселенная быстро расширяется. Вот такой трюк. Теперь давайте вернемся к предыдущей картинке.

    Вот когда скалярное поле здесь, то энергии у скалярного поля мало, Вселенная расширяется медленно, трения никакого нету. Если скалярное поле находится здесь, то энергия очень большая. Если энергия очень большая, посмотрим, что получается, на следующей картинке.

    Энергия очень большая, Хаббловская постоянная большая, коэффициент трения большой. Если коэффициент трения большой, скалярное поле катится вниз очень медленно. Если скалярное поле катится вниз очень медленно, то в течение большого времени оно остается почти постоянным. Если оно остается почти постоянным, я решаю вот это уравнение: a с точкой на a (å/a) равняется почти постоянной. А я вам уже сказал, какое будет решение. Если a с точкой на a (å/a) является почти постоянной, то это экспоненциальное решение, самое простейшее дифференциальное уравнение. И в таком случае Вселенная начинает расширяться экспоненциально.





    Логика такая: если большое значение скалярного поля φ, большая скорость расширения Вселенной, большой коэффициент трения, поле φ катится вниз очень медленно. Решая дифференциальное уравнение с константой, получаем экспоненциальное расширение, это есть инфляция. Всё очень просто.

    До этого надо было, в общем, помучиться, чтобы додуматься, чтобы всё свести к простому. В действительности началось всё с гораздо более сложного. Впервые идеи такого типа стал высказывать Алеша Старобинский в 1979 году здесь, в России. Его вариант этой теории основывался на квантовой гравитации с определенными поправками — конформные аномалии, теория была очень сложной, непонятно было, как, с чего начать, но теория, тем не менее, внутри Советского Союза была тогда очень популярной, она называлась «моделью Старобинского». Но немножко сложноватой, не было понятно, какая ее цель. Он хотел решить проблему сингулярности, это не удавалось...

    После этого возникло то, что сейчас называется старая инфляционная теория, ее предложил в 1981 году Алан Гус (Alan Guth) из MIT — сейчас он в MIT, а раньше он было в SLAC, рядом со Стэнфордом. Он предложил, что Вселенная с самого начала сидит зажатая по своей энергии в состоянии ложного вакуума, никуда не движется, энергия там постоянная, в это время она расширяется экспоненциально, а потом этот ложный вакуум с треском разваливается, образуются пузырьки, они соударяются... Зачем это было нужно? А его желание состояло в том, чтобы решить тот лист проблем, который я вам написал раньше: почему Вселенная однородная, почему она изотропная, почему такая большая, — его цель была такая. И в этом было достоинство его работы. Не потому, что он предложил модель — его теория не работала, а потому, что он сказал, что вот замечательно было бы сделать что-то такое, и тогда мы решим сразу все эти проблемы. А его модель не работала потому, что после столкновения пузырьков Вселенная становилась такой неоднородной и изотропной, что, как бы, не надо было и стараться...

    После этого все мы находились в состоянии душевного кризиса, потому что идея была такая приятная, такая симпатичная, и у меня была язва желудка, может быть от огорчения, что нельзя, никак не получается. А потом я придумал, как сделать то, что я назвал новой инфляционной теорией, а потом я придумал вот эту простую штуку с хаотической инфляцией, которая была проще всего. И тогда стало ясно, что мы говорим не о трюке каком-то, а всё может быть так просто, как теория гармонического осциллятора.





    Но зачем это всё надо, я не сказал. А вот зачем. Во время инфляции, во время вот этой стадии, пока я катился вниз, Вселенная могла расшириться вот в такое количество раз. Это в простейших моделях. Что означает вот эта цифра? Ну вот я сейчас скажу, что это означает. Пример из арифметики. Самый маленький масштаб — 10–33 см. Умножу его на десять, а дальше здесь рисуется вот такое вот количество нулей — не важно, какое количество нулей. Теперь возникает вопрос: чему равняется произведение? И ответ состоит в том, что вот, оно равняется вот этому же — значит, что 10–33 можно уже не писать, это маленькая вещь. Значит, Вселенная оказывается вот такого огромного размера. А сколько мы сейчас видим? Вот эти 13 миллиардов лет, умноженные на скорость света, — это примерно 1028 см. А вот это даже не важно, чего — сантиметров или миллиметров, не важно даже чего. Важно то, что вот это, ну, несопоставимо меньше этого.

    То есть наша наблюдаемая часть Вселенной — мы вот где-то вот здесь. (Можно сейчас уже погасить, да?) Вселенная начала расширяться, раздувалась, раздувалась, раздувалась, и мы живем как бы на поверхности этого огромного глобуса. И поэтому параллельные линии кажутся параллельными, поэтому никто и не видел этого северного и южного полюса. Поэтому наша часть Вселенной, где-то здесь, она вот началась где-то вот отсюда, из почти что точечки, и поэтому-то здесь все начальные свойства, ну, они-то рядышком, они были примерно одинаковыми. Поэтому и здесь они одинаковые.

    А почему Вселенная такая однородная? Ну а представьте, что вы взяли Гималаи и растащили их вот в такое количество раз. Значит, у вас никто туда с рюкзаком не пойдет, потому что от долины до горы надо будет вот столько идти. Будет плоское место. Поэтому наша Вселенная такая плоская, такая однородная, во всех направлениях одинаковая.

    Почему она изотропная? Что называется изотропной? Ну, она похожа как бы на сферу, во всех направлениях одинаковая, но она могла бы быть как огурец. Но если я огурец раздую вот в такое количество раз — а мы живем на его шкурке, — то во всех направлениях он будет одинаковым, поэтому Вселенная во всех направлениях станет одинаковой. То есть таким образом мы решаем большинство тех проблем, которые у нас возникали. Почему Вселенная такая большая? А вот почему! А сколько там элементарных частиц? А вот столько! Поэтому нам и хватает...

    То есть мы еще не знаем, откуда всё это взялось, мы не можем так просто решить проблему сингулярности начальной — мы про это еще немножечко дальше скажем, — но вот это то, зачем была нужна эта теория.

    С другой стороны, могло бы оказаться, что мы переработали немножко. Потому что если Гималаи полностью выплощить, то вся Вселенная будет настолько плоская и однородная, что действительно будет плохо жить там, мы тогда галактики ниоткуда не возьмем.





    Но оказалось, что можно галактики продуцировать за счет квантовых флуктуаций. И это то, что здесь же, в ФИАНе, говорили Чибисов и Муханов. Они изучали модель Старобинского и увидели, что там, если посмотреть на квантовые флуктуации пространства, а потом посмотреть, что происходит во время расширения Вселенной, то они вполне могут породить галактики. И мы на них смотрели и думали: что вы, ребята, тут говорите? Вы говорите о квантовых флуктуациях, а мы говорим о галактиках! Они же реальные... А потом вот что выяснилось. Это уже когда мы перевели всё это на язык скалярного поля и так далее... Молодцы, в общем, люди! Надо же было додуматься до этого!

    Вселенная работает как лазер, только вместо лазерного поля она продуцирует галактики. Вот что происходит. Возьмем скалярное поле, сначала высокочастотное, квантовые флуктуации. Квантовые флуктуации существуют всегда. Здесь, в этой аудитории, на маленьких расстояниях есть квантовые флуктуации. Хорошо, что вы мне дали два часа, я бы не закончил... За два часа, наверное, закончу...





    Так вот, квантовые флуктуации существуют сейчас, прямо здесь, но они всё время осциллируют, их, если посмотреть в мелкоскоп и быстро так снимать, то тогда мы увидим, что там что-то возникает, что-то исчезает. Так просто не увидишь, они для нас не важны. Но во время быстрого расширения Вселенной, предположим, что была такая квантовая флуктуация. Она растягивалась, с расширением Вселенной. Когда она растянулась достаточно — помните это уравнение для скалярного поля, где стоит этот член 3Hφ с точкой? Уравнение, член с трением. Когда у вас поле было коротковолновое, оно знать ничего не знало о трении, потому что оно билось с такой энергией, что его трением остановить было нельзя. А потом, когда оно растянулось, оно энергию свою потеряло и вдруг почувствовало, что Вселенная расширяется, что трение есть, и вот так и застыло. Застыло и продолжало расширяться, растягивая Вселенную.

    После этого, на фоне этой флуктуации, которая нарисована здесь, прежние флуктуации, которые раньше были очень коротковолновыми, энергичными и так далее, они растянулись, увидели, что Вселенная расширяется, почувствовали трение и застыли — на фоне тех флуктуаций, которые раньше застыли.





    После этого Вселенная продолжала расширяться, и новые флуктуации замерзали, а Вселенная расширялась-то экспоненциально. И в результате что произошло? Что эти все флуктуации раздулись до большого размера.





    См. также анимацию «Генерация квантовых флуктуаций»: 0,5 Мб и 9,6 Мб.

    Я сейчас поясню, что это такое: это результат вычислений, которые как бы симулируют возникновение флуктуаций и их дальнейшую эволюцию. Я объясню, что это будет, что это такое. Смысл состоит вот в чём. Что мы взяли эти квантовые флуктуации. Они замерзли. Вселенная стала неоднородной на экспоненциально большом масштабе. Эти неоднородности стоят, стоят, стоят... Потом инфляция кончилась. Потом — эта часть Вселенной еще не видит эту часть Вселенной. А потом прошло время, и они друг друга увидели. И когда увидели, эта часть Вселенной сказала: «А, у меня энергии меньше, а у тебя энергии больше; давай, все камни от меня полетят в эту сторону, потому что здесь гравитация сильнее». И эти флуктуации размораживаются. То есть сначала они были заморожены — за счет быстрого расширения Вселенной. А потом, когда две части Вселенной друг друга увидели, то эти флуктуации размерзли, и это буквально... по барону Мюнхгаузену.

    Я не знаю, в детстве сейчас вас учат, там, барона Мюнхгаузена читают? Нам читали. Как он путешествовал по России. Хотя он был немецкий лжец, но путешествовал по России, в Сибири. Они охотились. И был такой жуткий мороз, что когда он хотел позвать друзей, чтобы они вместе собрались, то он сказал «ту-туту-туту!», а ничего не получилось, потому что звук замерз в рожке. Ну, потом, было холодно, он в снегу, как опытный человек, отрыл пещеру, зарылся там... Наутро вдруг он слышит: «Ту-туту-туту!». Что произошло? Размерзся звук-то. Потому что утром солнце появилось, всё, снег подтаял, и звук размерзся...

    Вот здесь это же самое: сначала квантовые флуктуации замерзли, растащились на большое расстояние, а потом, когда дело уже пришло к тому, чтобы галактики образовывались, они размерзли, и неоднородности собрались вместе и сделались галактикой.

    Сначала мы начали с квантовых флуктуаций. Потом мы быстро сделали их огромными. И когда мы сделали их огромными, мы фактически сделали их классическими. Они уже в это время не осциллировали, не исчезали, они замерзли,, были большими. Вот этот трюк — как из чего-то квантового сделать что-то классическое.

    Значит, этот фильм показывает вот что. Если мы начнем с чего-то почти однородного, как сейчас, и потом начнем добавлять эти вот синусоиды... Каждый новый кадр показывает экспоненциально большую Вселенную. Но компьютер не мог расширяться, поэтому мы сжимали картинки. На самом деле надо понимать, что каждая картинка соответствует экспоненциально большей и большей Вселенной. И длины волн всех этих значений, они все примерно те же самые в момент, когда они создаются. А потом они растягиваются, но вот здесь не видно, что это здоровая синусоида. Кажется, что это пик, там, башня острая... Это просто потому, что компьютер их сжал.

    Не видно также и другое: что в тех местах, где скалярное поле подскочило по случайности очень высоко, в этом месте энергия скалярного поля оказывается такой большой, что в этом месте Вселенная начинает расширяться еще гораздо быстрее, чем она расширялась здесь. И поэтому в действительности, если бы правильно рисовать картинку — ну просто компьютер не умеет это делать, и это не компьютер виноват, это просто физика такая: нельзя кривое пространство представить себе уложенным в наше пространство, просто кривовато, как кривая поверхность, не всегда это удается, поэтому здесь ничего не поделаешь, — надо просто понять, что вот эти вот пики, значит, размер отсюда досюда — он гораздо больше размера отсюда досюда. Здесь на самом деле здоровый пузырь.

    Это то, что... — тоже достоинство русского обучения — то, что мы выяснили, когда были на практике военного дела в университете: что расстояние по прямой бывает гораздо длиннее, чем расстояние по кривой, если прямая проходит рядом с офицером... Здесь, если вы пойдете по прямой рядом с этим пиком, то вы никогда не дойдете, потому что расстояние будет всё больше и больше. Кривое пространство можно представить себе двумя способами. Первое — можно говорить про расширение Вселенной, а второе — можно говорить про сжатие человека. Вот человек — это мера всех вещей. Если вы идете отсюда и доходите рядом с пиком, то можно сказать, что ваши шаги становятся всё меньше, и меньше, и меньше, и меньше, и поэтому вам трудно, трудно идти. Это другое понимание того, что это такое за пузырь здесь — это просто место, где вы сами уменьшаетесь по сравнению со Вселенной. Это почти эквивалентные вещи.





    Откуда мы всё это знаем? Откуда мы знаем, что это всё правда? Ну, во-первых, честно говоря, мы с самого начала ведь знали, что это — правда. Потому что, ну, такая красивая была теория, так всё запросто объясняла, что после этого как бы даже экспериментальные доказательства были не очень нужны, потому что Вселенная же, ну... большая? — Большая. Параллельные прямые не пересекаются? — Не пересекаются... И так далее. Другого объяснения не было.

    Поэтому, как бы, вот есть экспериментальные данные. Но люди, всё равно, они хотят не просто так, а хотят, чтобы и еще что-нибудь предсказать бы, чего мы не знали, и чтобы это подтвердилось. И одно из предсказаний — эти вот квантовые флуктуации... Хорошо было бы их увидеть на небе, а мы их не видели. И один за другим стали запускаться разные системы, спутники, первый замечательный спутник — это был «Кобе» (COBE), запущенный в начале 90-х, и люди как раз в прошлом году получили нобелевские премии за это. Они увидели следующее. Они увидели, что микроволновое излучение, которое приходит к нам с разных сторон Вселенной, оно немножечко анизотропное.

    Сейчас я объясню, о чём идет речь. В середине 60-х люди увидели, что на Землю идет излучение с температурой примерно 2,7 K. Чего-то такое, радиоволны, очень малоэнергичные, но со всех сторон. Потом они поняли, что это такое. Вселенная, когда она взорвалась, она была горячей. Потом, когда она расширилась, эти фотоны свою энергию потеряли, и когда они к нам дошли, они дошли вот такими дохленькими, с маленькой-маленькой энергией. И со всех сторон была та же самая энергия — 2,7 K. Температура — мера энергии. Потом начали смотреть более пристально и увидели, что вот в этом направлении температура 2,7 плюс еще примерно 10–3, а вот в этом направлении 2,7 минус еще 10–3. И почему же это такое? А вот почему: потому что Земля движется по отношению ко всей Вселенной. И есть вот это самое красное смещение. В ту сторону, куда мы движемся, там небо становится более голубым, фотоны приходят чуть-чуть более энергичные. А откуда движемся, они идут немножечко более красные. Это был простой эффект. И мы сразу поняли, с какой скоростью мы движемся по отношению к реликтовому излучению, всё было просто.

    А потом люди захотели узнать, а нет ли еще какой-нибудь структуры? И вот запустили спутники, один из них «Кобе», а вот здесь, на картинке нарисован WMAP, спутник такой. И картинка, которая показывает как бы эволюцию во времени.

    Сначала был Большой взрыв, потом было вот это ускорение Вселенной — инфляция, потом возникли квантовые флуктуации, которые замерзли, потом эти квантовые флуктуации, которые замерзли, привели к возникновению структуры небольшой во Вселенной. В это время Вселенная была очень горячей. Она была такой горячей, что сигналы до нас просто не доходили, так же как Солнце для нас здесь непрозрачно: оно очень горячее, поэтому мы вглубь Солнца можем видеть только на несколько сотен километров. Вот...





    А потом вдруг Вселенная стала прозрачной для обычного излучения, потому что электроны объединились с протонами в атомы, и дальше, когда Вселенная стала более или менее нейтральной, свет стал проходить до нас. И вот мы видим то излучение, которое прошло от этого момента. И вот эти спутники, они посмотрели и померили температуру от разных точек во Вселенной с точностью до 10–5 K. Вот представьте себе, что в лаборатории было трудно получить, там, температуру один градус Кельвина. Люди померили температуру Вселенной, 2,7 K плюс еще, там, много знаков после этого, и потом они померили неточности в этой температуре с точностью до 10–5. Ну, научная фантастика! Я никогда не верил вообще, что это возможно, но потом стал доверять друзьям-экспериментаторам, потому что мы-то знаем, что мы, теоретики, а вот экспериментаторы, оказывается...

    Значит, вот, они померили такие маленькие пятнышки на небе, эти маленькие пятнышки — они здесь раскрашены. Мы знаем, что там, где энергия больше — это синее смещение, там где энергия меньше — это красное смещение, но здесь всё наоборот. Люди, которые эту карту раскрашивали, они понимали, что психология людей работает не так. Всё равно это не видимый свет, это радиоизлучение, поэтому не красный, не белый, никакой. Поэтому они его раскрасили искусственно. И вот то, что красное, это чтобы понять, что там горячо. А там, где синее, — это чтобы понять, что холодно. Поэтому они раскрасили прямо наоборот. Но не важно. Важно то, что вот эти пятнышки на небе, они с точностью до 10–5.





    Если поглядеть повнимательнее на кусочек этого неба, то вот какая картинка здесь получается. Вот такие вот пятнышки. Что это такое? А вот что это. Возникли эти квантовые флуктуации скалярного поля, растащились на всё небо, замерзли там, изменили там немножечко геометрию Вселенной и плотность вещества, изменили за счет этого температуру реликтового излучения, которое к нам приходит, и поэтому эта температура, вот эти неоднородности, являются фотографией тех квантовых флуктуаций, которые возникли на последних стадиях инфляции — возникли и замерзли. То есть мы сейчас видим всё небо, и это всё небо является как фотографическая пластинка, на которой изображены квантовые флуктуации, возникшие на конечной стадии инфляции, примерно в 10–30 с. Мы видим фотографию того, что произошло с 10–30-й секунды после Большого взрыва. Ну вот, чудеса, что тут можно сказать!





    Мало того, что мы видим эту фотографию — изучили ее спектральные свойства. То есть эти пятнышки на больших угловых размерах имеют одну интенсивность, на маленьких угловых размерах они имеют другую интенсивность. Посчитали спектр этих флуктуаций и выяснили, что спектр — он вот такой: черные пятнышки — это то, что экспериментально видит этот самый спутник WMAP. С тех пор появились и еще другие результаты, которые вот в эту область простираются, я их сейчас здесь и приводить не стал. Но вот красная линия — это теоретические предсказания простейшей модели инфляционной Вселенной, а черные точки — это то, что экспериментально видно.

    Здесь есть какие-то аномалии. При больших углах самые большие расстояния маленькие. Здесь l — то, что здесь, вот, на этой оси, — это количество гармоник. То есть чем больше l, тем больше гармоники, тем меньше угол. На маленьких углах прекрасное совпадение с экспериментальными данными. На больших углах что-то не до конца понятное происходит. Но может быть, это просто потому неточности, потому что нам дан-то один только кусок Вселенной: мы статистику изучаем, а статистика у нас — как вы подбросили монетку один раз, какая вам статистика? Вам надо подбросить ее сто раз, чтобы увидеть, что примерно 50 на 50 произошло. Поэтому на больших углах статистика не очень точная. Всё равно немножечко точки выпадают — есть некая проблема, что здесь происходит. Какие-то есть анизотропии во Вселенной, которые мы не можем объяснить в больших масштабах пока что. Но тем не менее, факт-то состоит в том, что все остальные точки, оказывается, прекрасно ложатся. И поэтому совпадение теории с экспериментом очень впечатляющее.





    Я решил для себя, что я должен придумать способ объяснить изменение картины мира на простом языке. А картина мира... Сейчас, я пока что до этой самой теории многоликой Вселенной еще не дошел. Это пока что простая картинка... Так вот. Изменение картины мира, оно выглядит так. Что сидим мы на Земле, смотрим вокруг. И вот окружены этой хрустальной сферой. Дальше ничего мы видеть не можем, а есть там звёзды, планеты... И мы знаем, что мы используем нашу космологию как машину времени.

    Если мы возьмем и посмотрим, там, на Солнце, мы видим Солнце, каким оно было несколько минут назад. Посмотрим на дальние звёзды. Мы увидим звёзды такими, какими они были много лет назад, сотни лет назад, тысячи лет назад.





    Если мы немножечко дальше пойдем, то мы увидим галактики такими, какими они были, там, миллиарды лет назад.





    Если мы еще дальше пойдем, то мы увидим вот это место, где Вселенная только что стала горячей, и в это время пошли к нам фотоны, это вот то, что эти спутники видят, вот мы увидели этот космический огонь. А дальше Вселенная непрозрачна. Дальше, ближе к этому Большому взрыву, который произошел вот эти 13 миллиардов лет назад, мы подойти не можем. Но, конечно, если бы использовать, например, нейтрино, которые в это время излучены, — мы знаем, что мы можем получать нейтрино, которые идут из центра Солнца, — можно было бы получить нейтрино, которые были испущены ближе к этому Большому взрыву. Сейчас мы видим только то, что было примерно 400 000 лет после Большого взрыва. Ну, все-таки... по сравнению с 13 миллиардами четыреста тысяч — довольно хорошо... Но если бы нейтрино, мы могли бы подойти гораздо ближе. Если бы гравитационные волны, мы могли бы подойти совсем близко к Большому взрыву, прямо вот буквально до вот таких вот времен от Большого взрыва.





    А что говорит инфляция? А инфляция говорит вот что. Что на самом деле вот этот весь огонь космический, он возник после инфляции, и здесь есть экспоненциально много места, когда вся Вселенная была заполнена только скалярным полем, когда частиц никаких не было, а если бы они даже и были, то плотность их экспоненциально падала бы всё время, потому что Вселенная экспоненциально расширялась.

    Поэтому что бы там ни было до инфляции, это совершенно не важно. Вселенная здесь была практически пустой, а энергия сидела в этом скалярном поле. А уж после того, как оно — помните эту картину: скалярное поле шло вниз, вниз, вниз, потом постепенно, когда оно доходило донизу, Хаббловская постоянная становилась маленькой — оно начинало осциллировать, в это время за счет своих осцилляций оно порождало нормальную материю. В это время Вселенная становилась горячей. В это время возник этот огонь. А мы раньше думали, что этот огонь от начала мира. Мы просто были как волки, которые боятся через огонь перепрыгнуть, мы знали, что вот это вот начало мира.

    Выясняется сейчас, что для того, чтобы объяснить, почему этот огонь был так однородно распределен, нам надо было, чтобы была стадия, которая всё уравнивала. И это — инфляционная стадия.





    И дальше можно по небу идти далеко-далеко за это место, потому что Вселенная вот такая вот большая, вот столько там было. И если мы пойдем дальше, мы увидим эти места, где возникают квантовые флуктуации, которые порождают галактики. И мы увидим те места, где эти флуктуации такие большие, что они порождали новые части Вселенной, которые расширялись быстро и которые порождаются и возникают и сейчас. Вселенная за счет этих квантовых флуктуаций порождает сама себя, не только галактики, но большие части самой себя. И она становится бесконечной и самовоспроизводящейся Вселенной.





    Но помимо всего этого возникает еще один эффект. Вот я вам рассказывал про Вселенную, в которой было скалярное поле только одного типа. Скалярное поле с таким простым потенциалом... Мы знаем, что если мы хотим описать теорию элементарных частиц полностью, то нам нужно много скалярных полей. Например, в теории электрослабых взаимодействий имеется хиггсовское поле. И хиггсовское поле делает все частицы нашего тела тяжелыми. То есть электроны приобретают массы, протоны приобретают массы, фотоны не приобретают массы. Другие частицы приобретают массы. В зависимости от того, какое скалярное поле, они приобретают разную массу.

    Но этим дело не кончается. Есть еще и теория Великого объединения, в которой возникает скалярное поле другого типа. Это другое поле. Если бы его не было, то не было бы принципиальной разницы между лептонами и барионами, тогда бы протоны могли легко распадаться на позитроны, не было бы разницы между материей и антиматерией. Для того чтобы объяснить, что там произошло, как эти вещи отделились, пришлось ввести еще одно скалярное поле... В принципе, этих скалярных полей может быть много. Если посмотреть на простейшую теорию — суперсимметричную — теорию Великого объединения, то окажется, что потенциальная энергия в ней рисуется вот так...

    Ну, это тоже примерная картинка, на самом деле. Это некоторое поле, которое на самом деле является матрицей. И вот, при одном значении этого поля нету никакого нарушения симметрии между слабым и сильным электромагнитным взаимодействием, нет разницы между лептонами и барионами. Есть другое значение поля, в котором специальный тип нарушения симметрии, совсем не то, что мы видим. Есть третий минимум, в котором как раз физика нашего мира. В действительности надо еще написать вот наше скалярное поле, и если всё вместе написать, то будет десяток таких минимумов. У них у всех в первом приближении одинаковая энергия, и мы живем только в одном из этих минимумов.

    И тогда возникает вопрос: а как же мы в этот минимум попали? А в самой ранней Вселенной, когда температура была горячей, существовал только вот этот минимум. И возникала проблема: как же мы тогда просочились вот в этот минимум-то, потому что в ранней Вселенной, в согласии с той теорией, которую мы здесь развивали вместе с Давидом Абрамовичем Киржницем, которому пришла эта идея ему в голову, насчет того, что в ранней Вселенной симметрия между всеми взаимодействиями восстанавливается. И вот тогда мы должны были бы сидеть здесь. А как же мы тогда попали вот сюда ? И единственный способ, как мы туда могли попасть, это за счет квантовых флуктуаций, которые генерировались во время инфляции.

    Но ведь это скалярное поле тоже скакало и тоже замерзало. И оно могло перескочить в этот минимум, перескочить в этот, перескочить обратно. Потом, если оно перескочило в один из этих минимумов, часть Вселенной, в которую мы попали в этот минимум, она начинала быть экспоненциально большой. Эта начинала быть экспоненциально большой, эта... И Вселенная разбилась на экспоненциально большое количество частей экспоненциально большого размера. Со всеми возможными типами физики в каждой из них.

    Что это означает? Что, во-первых, может быть много скалярных полей. Во-вторых, может быть много разных минимумов. И после этого, в зависимости от того, куда мы попали, Вселенная могла стать разбитой на большие, экспоненциально большие области, каждая из которых по всем своим свойствам выглядит — локально — как огромная Вселенная. Каждая из них имеет огромные размеры. Если мы в ней живем, мы не будем знать, что другие части Вселенной существуют. А законы физики, эффективно, там будут разные.

    То есть, в действительности, закон физики — он один и тот же может быть, у вас имеется одна и та же теория, — но это так же, как вода, которая может быть жидкой, газообразной, твердой. Но рыба может жить только в жидкой воде. Мы можем жить только вот в этом минимуме. Поэтому мы там и живем. Не потому, что этих частей Вселенной нет, а потому, что мы можем жить только здесь. Вот возникает эта картина, которая и называется «многоликая Вселенная», или «Multiverse» вместо «Universe».





    Другим языком. Мы знаем, что наши свойства определяются генетическим кодом — кодом, который нам достался в наследство от наших родителей. Мы знаем также, что существуют мутации. Мутации происходят, когда что-нибудь странное происходит. Когда космические лучи, когда какая-нибудь химия не та — ну, вы лучше меня знаете, что нужно для того, чтобы мутации происходили. А мы знаем также, что всё вот огромное количество видов — необходимо было, чтобы эти мутации были.

    Так вот, во время расширения Вселенной тоже были мутации. У вас Вселенная, даже если с самого начала она находилась в одном минимуме, то после этого она начинала прыгать из одного минимума в другой и разбивалась на разные типы Вселенной. И вот этот механизм квантовых флуктуаций, которые перебрасывали Вселенную из одного места, из одного состояния в другое — их можно назвать... это можно назвать механизмом космических мутаций.





    (К сожалению, здесь, конечно, не видно часть того, что я собирался показывать. Ну, словами, значит...) Ландшафт. Возникла такая терминология, потому что эта терминология, эта картинка оказалась очень важной в контексте теории струн. Люди уже давно говорили про теорию струн как лидирующего кандидата на теорию всех взаимодействий. Я в этом месте, к сожалению, «плаваю»... Хотя я и являюсь одним из соавторов вот этой картинки, которая здесь есть. То есть в течение многих лет люди не знали, как с помощью теории струн описать наше четырехмерное пространство.

    Дело в том, что теорию струн легче всего сформулировать в десятимерном пространстве. Но в десятимерном пространстве шесть измерений являются лишними, надо как-нибудь от них отделаться. Идея состоит в том, что их надо как-нибудь сжать в маленький клубочек, чтобы их никто не видел, чтобы в шесть направлений никак никто не мог пойти, а мы видели бы только четыре большие измерения — три пространства и одно время. И вот мы гуляли бы в этих трех пространственных измерениях и думали бы, что наша Вселенная трехмерная плюс одно время, а в действительности где-то в сердце Вселенной хранилась бы информация о том, что она происхождение имеет пролетарское — десятимерное. И хотелось бы ей стать десятимерной тоже. Вот в теории струн так всё время получалось, что она хочет быть десятимерной, и до последнего времени не знали, как сделать ее четырехмерной, оставить ее нормальной. Во всех вариантах получалось, что это состояние неустойчивое.

    В 2003 году у нас в Стэнфорде Качру, Рената Каллош, которая также из ФИАНа, я и еще один человек из Индии — мы предложили некий вариант этой теории, в котором можно понять, почему шестимерное пространство не расширяется, застревает, становится стабильным. В действительности, оно не является... Кстати, я в этой работе был консультантом по космологии. Поэтому мое знание теории струн от этого немножечко увеличилось, но не настолько, чтобы я мог комментировать это полностью грамотно, но полуграмотно я уже научился говорить...

    Значит, что произошло? Произошло следующее. Есть эти шесть измерений, причем эти шесть измерений, когда они сжимались до маленького размера, они сжимались очень хитро. У этого шестимерного пространства довольно хитрая топология. Кроме того, что там топология, там есть разные браны, там есть разные потоки, которые проходят вокруг всего этого дела... Для нас важно из этого вот что: что Вселенная внутри могла сжаться огромным количеством разных способов. То есть вдобавок к этим скалярным полям, про которые я говорил, имеется еще огромное количество способов сделать наш мир, то есть сжать этот шестимерный мир большим количеством способов.





    И получается вот что: вот эта картинка, которая иллюстрирует... (Ох, как жалко! Может быть, можно сейчас задний свет выключить на некоторое время? Может быть, его можно вообще выключить? Потому что картинки красивые...) Значит, это картинка, которая иллюстрирует то, как устроено пространство Калаби—Яу, это один из вариантов того, что там происходит, в шестимерном пространстве. (Да, всё равно плохо видно...) Я покажу еще пару вариантов, может быть тогда вместе станет понятнее, о чём речь идет. Люди пытаются сделать, ну как-нибудь изобразить шестимерное пространство и перевести это на двумерную поверхность. Сделать это очень трудно, они берут разные сечения этой поверхности, проекции и так далее. Что бы они ни делали, как бы они ни делали, получается вот что: что есть поверхности, а есть огромное количество дырок в них.





    Вот еще одна картинка, которая иллюстрирует — разные люди пытаются это сделать — иллюстрирует это дырявое пространство.





    Вот еще один вариант — здесь даже есть кино, которое, если нам повезет, закрутится, — который показывает пространство такого типа с дырками, а также показывает, что на самом деле у него могут быть свойства разные, оно иногда вот такое сингулярное, а иногда у него есть также скалярные поля, которые описывают размеры перемычек, которые там возникают. И вот вокруг этих самых штук могут существовать еще потоки полей, которые там есть, всё это внутри шестимерного пространства. И вариантов сделать это очень много.





    См. также анимацию «Вселенная Кандинского»: 6,6 Мб.

    В свое время — это было в 1984 году — Андрей Дмитриевич Сахаров, находясь в то время в Горьком, написал статью, которая содержала много вещей, часть из которых неизвестно зачем была написана, но одно место было написано замечательно. Он сказал, что если у нас Вселенная имеет много измерений, то эти измерения могут быть свернуты в тот тип, который мы сейчас видим, огромным количеством способов. И это огромное количество способов может объяснить, почему плотность энергии вакуума сейчас та, которая она сейчас есть. Почему? Потому что этих вакуумов так много, что один из них — по случайности — имеет энергию вакуума, которая сейчас имеется, а если бы мы жили чуть-чуть повыше или чуть-чуть пониже, то жизнь была бы невозможна.

    И вот эта идея, она сейчас находится в основе современного объяснения того, почему космологическая постоянная сейчас такая маленькая. Но в то время мы не знали, как сделать это и стабилизировать все эти вакуумные состояния. А сейчас мы научились это делать — и выяснили, что способов сделать это очень много.

    А это те картинки, которыми мы иллюстрировали эти возможности. Когда я впервые приехал в Стэнфорд, я попытался получить какой-нибудь компьютер, на котором бы всё это дело проиллюстрировать, и... Ой, это была драматическая история! Потому что мы туда приехали, я на компьютере вообще работаю плохо, но один из моих сыновей хорошо умеет это делать. И я сказал ему: «Ну, Дима, может быть, ты можешь мне помочь? Потому что, если мы научимся показывать Вселенную так красиво, может, они нам дадут хороший компьютер, тогда мы будем на нём хорошо работать». Он сказал: «Папа, давай попробуем». И мы начали пробовать где-то в подвале Стэнфордского университета, делали какие-то эксперименты с этим делом, научились что-то делать... А потом я стал звонить местным компаниям и говорить: «Вот, если вы нам дадите свой компьютер, самый мощный, то мы, может быть, сможем показать вам Вселенную в масштабах, которые вы никогда в жизни не увидите в телескоп». Они говорят: «О, как интересно!», и никогда мне больше не позвонили. Потом я позвонил еще в одну компанию, еще в одну компанию... Ничего не получалось.

    А потом мне позвонили из BBC и сказали: «Мы хотим у вас взять интервью, там, насчет темной материи». А темная материя... Ну что мне темная материя? Меня тогда Вселенная интересовала, а не темная материя. Я говорю: «Ну, хорошо, ладно, я вам дам интервью. Я вам, может быть, еще кое-что покажу, когда вы приедете — через месяц». И я стал звонить местным компаниям и говорить, что, знаете что, вот если вы мне дадите самый ваш мощный компьютер, то ко мне через месяц BBC приезжает, и я им тогда покажу Вселенную на экране вашего компьютера — на BBC. Сказали: «Да, всё очень интересно», — но никто мне больше не перезвонил.

    Последняя компания, которая мне позвонила с отказом, была «Silicon Graphics». И они мне сказали, что вот, к сожалению, мы окончательно поняли, что мы не можем вам предоставить тот компьютер, который вы хотели, но я к тому времени уже изнахалился, мне было всё равно, и я им сказал: «Знаете что? Вы проиграли вашу игру, потому что эти люди приезжают ко мне уже через неделю, и даже если бы вы мне дали самый ваш мощный компьютер, который у вас только имеется, я бы всё равно не успел сделать всё, что я хотел, поэтому до свидания». Они сказали: «Знаете что, давайте мы вам завтра позвоним». На следующий день они мне позвонили и сказали: «Вы знаете, мы окончательно выяснили, что такого компьютера, который вы хотели, у нас нет, но вот не рассмотрите ли вы возможность поработать на компьютере, который в четыре раз мощнее?» Я сказал: «Ну, я рассмотрю эту возможность, а как мне за ним заехать? Вот я к вам на своей «Хонде» приеду...» Они говорят: «Нет, в вашу «Хонду» он не войдет».

    Ну, тогда я взял университетский такой «трак», залез на него — я никогда его не водил, — ну, он, значит, делал «бип-бип», когда я на нём ехал назад... Я поехал в неизвестное мне место на этом большом самосвале, приехал в «Silicon Graphics», они меня подвели, там стоял такой здоровый сундук на полу, и объяснили мне, как его включить и как его выключить. А я сказал: «Вы знаете что, мне этого, вообще, недостаточно, не могли бы вы показать это моему сыну? Потому что он на нём будет работать, а он еще сейчас пока что не пришел из школы...» Они на меня поглядели и сказали: «Молодой человек, вы знаете, что этот компьютер стоит 120 тысяч долларов? Может быть, мы с вами это отложим?» Я сказал: «Ну ладно, я его возьму».

    Вот. Значит, я его взял — как они мне его дали, не знаю, — я его грязными веревками примотал к бортам... Привезли мы его домой, сын пришел, включил компьютер, начал работать. Через неделю... я не понимаю, как это бывает! — через неделю у нас были все вот эти картинки: Вселенная сверкающая, вращающаяся... с помощью «Silicon Graphics» можно было посмотреть на нее, повернуть ее, как хочешь... Мы летали между этими пиками — это было наслаждение!

    Приехали эти люди из BBC, они взяли у меня интервью, рядом со Стэнфордским университетом, меня они там фотографировали, я им рассказывал про темную материю. А потом я сказал: «Вы хотите поглядеть на нашу Вселенную в масштабе гораздо большем, тра-та-та... Мне сказали: «Вы знаете, нам, это неинтересно...» Я сказал: «А чаю хотите?» Они говорят: «Чаю хотим». Ну, я их пригласил домой, я угостил их чаем... и включил компьютер. «А это что такое?» И они начали снимать у меня эти фотографии прямо с компьютера, и после этого они у меня продолжали это снимать до тех пор, пока они уже опаздывали в аэропорт... Вот таким образом всё это произошло...

    Через неделю — на восьмой день — я должен был вернуть этот компьютер в «Silicon Graphics». И когда я его вернул, компьютер у них... крашнулся, и все эти, значит, изображения Вселенной исчезли. Вселенная была создана в семь дней, а на восьмой день она исчезла... Но они успели записать это всё на магнитную пленку. Я это показал в Стэнфорде, они поняли, что мы к делу относимся серьезно. Они нам купили «Silicon Graphics», который был в четыре раза менее мощным, чем этот, и на нём мы, вот, произвели все эти картинки.





    См. также анимацию «Формирование многоликой Вселенной»: 1 Мб и 1,6 Мб.

    Сейчас давайте я дальше немножко пойду. И вот эти все картинки, которые я показываю, всё эти кино, они были сделаны уже почти семнадцать лет назад, всё продолжают быть такими же красивыми... Значит, начали мы с красного состояния. Это означает: мы сидели в одном из этих минимумов, и по традиции мой начальный минимум я рисую красным цветом. Мой сын занимался компьютерными вещами, а я был как художник... Значит, начали с красного состояния, после этого всё стало флуктуировать.

    Вот то, что рисуется наверх, это плотность энергии Вселенной. То, что здесь цвета, показывает вам, что мы можем быть в красном минимуме, в зеленом минимуме, в синем минимуме — и во время, когда Вселенная раздувается, происходит перескакивание из одного состояния в другое. А вот здесь плотность энергии большая, и всё из нее стабилизировано. Скалярные поля легко перескакивают из одного состояния в другое. Всё еще законы физики меняются постоянно. А там, где мы уже рядом с минимумом, там они более-менее стационарны.





    И если это дело продолжить, то получаются картинки такого типа. Вот уже здесь всё стационарно, в красном минимуме. Вот здесь всё стационарно, в синем минимуме. Вот здесь близко к стационарности — в зеленом. Здесь плотность энергии огромная, и поэтому там всё время еще всё продолжает перескакивать. Каждый из этих пиков на самом деле является экспоненциально большой Вселенной, и в каждой из них свои законы физики, и всё еще продолжают меняться.

    Если мы живем в красном минимуме и хотим попасть в синий, то по дороге мы наткнемся на барьер. Это будет доменная стенка, энергетически очень большой величины. Мы, когда к ней подлетим... подлететь будет очень трудно, потому что расстояние — 10 в миллионной степени, поэтому надо быть долгожителем, чтобы долететь туда... Потом, когда мы приедем сюда, для того чтобы пересечь границу, нам надо иметь очень много энергии, потому что не пускает нас доменная стенка. Но если мы, тем не менее, разгонимся хорошо и перескочим, то тут же и умрем, потому что частицы нашего типа, они распадаются, они не могут существовать или меняют свои свойства во Вселенной другого типа. Поэтому, вот есть разные вселенные, но воспользоваться этим может оказаться небезопасно.





    Если мы пойдем немножечко дальше, то вот это иллюстрация того, как мы в то время рисовали себе, как устроена Вселенная. Вот это — начало. Например, Большой взрыв — то, что мы всегда представляли себе, как Большой взрыв, как начало всего мира — что Вселенная начала расширяться, и она становилась экспоненциально большой и локально однородной, то есть локально получалось то, чего мы хотели. Мы объясняли, почему на расстоянии, на которое мы сейчас видим, всё одинаковое, всё всюду то же самое, что и здесь. Но с другой стороны, та же самая теория — и в этом ирония ее: мы объяснили, почему всё так хорошо рядом, — но та же самая теория, которая объясняла, почему всё так хорошо рядом, она предсказала, что на сверхбольших расстояниях Вселенная имеет совершенно другие свойства.

    Здесь разные цвета показывают разные типы физики в разных частях Вселенной. Это возникновение пузырей происходит постоянно, оно будет происходить вечно, у Вселенной никогда не будет конца. В разных ее частях возникают разные куски Вселенной, разного типа. Мы находимся где-то здесь или, может быть, здесь. Мы смотрим на этот кусок, мы смотрим на этот кусок и говорим: это был Большой взрыв. Но на самом деле это был... ну, в общем, достаточно большой взрыв, порядочный взрыв, но — не Большой взрыв. А был ли Большой взрыв, мы в действительности не знаем. Наверное, да. Может быть, да.

    Почему? Потому что, если брать отсюда вот и пытаться пойти назад, то всегда возникнет место, где каждая из таких траекторий утыкается в сингулярность. Поэтому надо всё равно думать о том, как вся наша Вселенная родилась, мы от этого вопроса не отвертелись. Но мы этот вопрос отодвинули в довольно неопределенное прошлое, потому что в действительности мы можем жить здесь, а мы, может быть, живем где-нибудь еще там. И если мы возьмем типичную красную Вселенную, то она, вообще говоря, бесконечно далеко от этого самого Большого взрыва. Или, там, очень далеко. И поэтому сам-то Большой взрыв, он, может быть, где-нибудь и был, но только вот то, что мы видим сейчас — наверное, мы видим только его вот этих... представителей. И вот это вот то, что является мутацией Вселенной во время ее эволюции.

    Это то, как мы рисовали эту картинку в простейших теориях — тех, которые были популярны раньше.





    В теориях типа теории струн эта картинка приобретает немножко другие очертания. Вот такие плавные переходы и изгибы, вот эта Вселенная Кандинского — они были характеристикой теории, в которых поле медленно катилось, здесь такие пологие горки... В теории струн часто возникает ландшафт такой, что там довольно крутые минимумы, которые отделены друг от друга иногда барьерами, плохо проходимыми. И когда вы туннелируете и переходите из одного состояния в другое, этот переход происходит за счет рождения пузырей другой фазы. И эти пузыри — они расширяются, каждая стенка движется со скоростью, равной скорости света. Между этими пузырями — старое возбужденное вакуумное состояние огромной энергии.

    Поэтому картинка такая. Возникают два пузыря, например. Каждый из них расширяется очень быстро, но Вселенная между ними продолжает раздуваться — и поэтому расстояние между пузырями остается очень большим, они не сталкиваются. Возникают еще — и расширяются. Изредка некоторые из них сталкиваются, но в среднем — не сталкиваются. Иногда скалярное поле внутри этих пузырей подскакивает назад. То есть, вот, мы были раньше в красном, и вдруг из новых пузырей оно обратно подскочило в красное. Эта часть Вселенной начала снова экспоненциально расширяться, возникают области экспоненциально большие — красные пузыри.

    В части из этих пузырей нету никакой структуры — не образовалось. В части из этих пузырей была та стадия медленного скатывания инфляции, во время которой возникали и замерзали эти квантовые флуктуации, там возникала структура, там возникали галактики, там мы могли жить. Вот поэтому мы можем жить здесь, можем жить здесь. Может быть, мы можем жить здесь... Здесь разные свойства, надо сравнить. В части Вселенной мы можем жить, в части нет. И таких типов Вселенной, таких красок, согласно теории струн, где-то 10 в тысячной степени (101000). В действительности мы не знаем в точности — 10 в тысячной или 10 в сотой (10100), люди еще продолжают считать. Иногда они говорят: ну, вообще-то, может быть, даже и бесконечное количество разных возможностей... Поэтому мы не знаем в точности, мы знаем только, что довольно много разных возможных состояний.





    Это картинка, которая показывает повернутую картинку — то, что я раньше говорил, — это можно найти на странице WMAP Satellite. Вот это стадия инфляции, это те штучки, которые они фотографируют — квантовые флуктуации, а вот это тот самый венец творения — WMAP.





    И сейчас это иллюстрировалось художником, которому говорили следующее: что вот одна такая вселенная, другая такая вселенная, еще такие — много WMAP надо было бы запускать в разных частях Вселенной. И интересное свойство этой картины состоит в том, что во время, когда всё это происходит —эти процессы происходят неограниченно долго, — возникает этот круг событий неограниченно много раз, ну, считайте, бесконечное количество раз. Рассмотрим нашу часть Вселенной. Она конечна — то, что мы сейчас видим, — она конечна. В ней 1087 элементарных частиц, может быть 1088. Эти частицы можно переставить ограниченным количеством способов. Что бы мы ни комбинировали в нашей части Вселенной, существует ограниченное количество комбинаций.

    На это внимание обратил Саша Виленкин, который сейчас живет... в Бостоне. И вот недавно вышла его книжка, хорошая книжка, которая тоже посвящена многоликой Вселенной, и утверждение состоит в следующем. У вас имеется бесконечное количество кусков Вселенной, а способов организовать материю в них, хотя у вас и имеется 10, там, в тысячной степени чего-то, но всё равно конечное количество, частиц там конечное количество, их организовать можно конечным количеством способов. Это означает, что обязательно где-нибудь во Вселенной сидит вот такой же в точности зал, заполненный такими же в точности людьми, я в это время делаю такой же в точности доклад... я его кончаю вовремя...





    И это последняя картинка, о которой я хочу сказать. Значит, что происходит в этих многих копиях одной и той же Вселенной? Вселенная рядом с нами собирается распасться. Почему мы это знаем? Ну, на самом деле мы не точно это знаем, потому что это всё основано сейчас на наших лучших вариантах той теории, которая у нас есть. Если бы мы просто знали то, что нам сказали экспериментаторы в 1998 году, — то, что Вселенная экспоненциально расширяется, — если просто учесть то, что мы узнали в 1998 году — мы узнали, что Вселенная сейчас вот вышла на новую стадию раздувания Вселенной, только малоэнергичную — это просто то, с чего я сейчас начал.

    Ускоренное расширение Вселенной, вот оно было раньше, на начальной стадии Вселенной, вот оно начинается сейчас — новая стадия раздувания Вселенной. К чему это приведет? Нашу Галактику это не тронет. Стадия раздувания Вселенной, которая сейчас идет, она очень медленная, материя внутри нашей Галактики гравитационно так сильно друг к другу притянута, что где-то там галактики будут от нас улетать, но мы-то в нашей Галактике уцелеем. На нее, скорее всего, в это время еще упадет галактика Андромеды, а все остальные галактики, однако, от нас улетят. И мы их больше не увидим.

    Интересное свойство теории такого типа, теории ускоряющейся Вселенной — она напоминает свойства черной дыры. Вот в каком смысле. Значит, вот, как устроена черная дыра? Если вы летаете где-то рядом с черной дырой, вы видите, что она далеко от вас, и ее свойства асимптотически не меняются. Ну, я не буду говорить о том, что материя на нее падает, там что-то рядом с ней происходит, они светятся, но не сами по себе, а только за счет того, что материя туда падает. А так вот идеальная черная дыра стоит и не меняется.

    После этого вы решили узнать, что происходит с черной дырой. Но вы сами немножечко боязливы, кроме того, вы теоретик, а ваш друг-экспериментатор хочет узнать, что происходит. Вы тогда говорите: «Ну так ты туда слетай, потом расскажешь». Он туда летит, и когда он падает в черную дыру, он падает туда реально, но вы никогда не увидите, что он туда падает. Он будет как бы потихонечку прилипать к сфере Шварцшильда, то есть он будет туда подходить всё ближе, ближе и ближе, сначала он вам будет передавать сигнал и вы будете слышать, как он с вами говорит нормальным голосом, потом его голос будет становиться всё более сиплым за счет доплеровского эффекта, он сам станет всё более красным, потом инфракрасным, потом радиодиапазон... В результате он будет прилипать, и он будет становиться всё более плоским. Он распластается по черной дыре и как бы истончится и иссякнет, и больше вы из него ничего не получите. Это способ сохранить спящую царевну в неприкосновенности, потому что для нее время остановится. Единственное, если вы хотите к этой царевне пойти и ее поцеловать, то вы туда полетите и вместе с ней туда упадете... Ну, это, наверное, плохой вариант...

    Значит, зачем я про это говорю? Мы сейчас находимся в экспоненциально расширяющейся Вселенной. И все ее части, далекие от нас, все галактики от нас улетают. Так же, как этот друг, который улетает в черную дыру, так же все эти части улетают к некоторой другой поверхности, которая называется горизонтом для мира де Ситтера, для этого ускоряющегося мира сейчас. И все эти галактики будут прилипать к горизонту, который от нас находится на расстоянии примерно эти самые 13,7 — ну, немножечко больше, чем это, — миллиардов световых лет. И все эти галактики прилипнут к горизонту и истают для нас, станут плоскими, сигнал от них перестанет приходить, и останется одна наша Галактика. Энергетические ресурсы в нашей Галактике потихонечку иссякнут, и такова печальная наша судьба...

    И это то, что люди думали, когда они занимались простой такой теорией, которая говорит: вот, мы вели наблюдения, всё от нас улетит. Сейчас, когда мы поняли... немножечко разобрались с тем, как стабилизировать эти шесть внутренних измерений в теории струн, мы также узнали, что эта картинка сама по себе невозможна. Мы не сумели сделать теорию струн вариантом этой теории, в которой удавалось бы получить это состояние, в котором это ускоренное состояние Вселенной продолжалось бы вечно. Единственное, что удавалось сделать, — это построить метастабильное вакуумное состояние, в котором временно Вселенная будет экспоненциально расширяться. Это метастабильное состояние в конце концов распадется. Простейшие оценки в простейших теориях показали, что время распада может быть так велико как 10 в степени 10 в степени 120. Лет или секунд — это уже не важно. Много времени. Так что не сразу мы распадемся.

    Но, когда распадемся — как мы распадемся? — возникнет пузырек новой фазы. В этом пузырьке есть два варианта. Первый вариант — что внутри него будет десятимерное пространство Минковского. Мы не можем жить в десятимерном пространстве. Про это сказал Эренфест в 1917 году, когда произошло много разных событий. Например, мир де Ситтера, решение мира де Ситтера было получено в 1917 году. В 1917 году Эренфест объяснил, почему Вселенная трехмерная. Потому что в четырехмерном мире (пространстве), пятимерном не может существовать планетных систем. По теории относительности, в двумерном, одномерном пространстве тоже не может существовать планетных систем, там просто нету никакого гравитационного притяжения на большом расстоянии между телами. Только в трехмерном пространстве могут быть планеты, атомные системы, поэтому как только мир станет десятимерным, so sorry, значит в этом мире жить мы не можем... Значит, возникнет такой пузырек, начнет расширяться, стенки его будут двигаться на нас со скоростью равной скорости света; в момент, когда мы увидим эту стенку, в этот момент мы перестанем что-то видеть. Так что никому об этом больше не расскажем. Один вариант. Но все-таки это будет нормальное стабильное пустое состояние, мир Минковского, десятимерный. Если бы там остался кто-нибудь, то он мог бы гулять в девяти разных направлениях.

    Второй вариант состоит в том, что распад может произойти в так называемый мир анти-де Ситтера — это мир, в котором плотность энергии вакуума отрицательна. Возникает пузырек, внутри которого плотность энергии вакуума отрицательна. Мир, который возник таким образом... Математики, которые описывают мир анти-де Ситтера, они обычно говорят про бесконечно существующий мир анти-де Ситтера. Но мир с отрицательной космологической постоянной, возникший внутри пузыря, он представляет из себя вселенную, которая будет коллапсировать довольно быстро, — просто всё уйдет в сингулярность.

    Поэтому у нас есть два невеселых варианта. Первый вариант — это то, что мы все перейдем в десятимерное пространство и умрем там, таким образом. Второй вариант — это то, что мы перейдем в этот мир анти-де Ситтера, в некотором смысле, и сколлапсируем довольно быстро. Веселых вариантов у нас никогда не было. В открытой Вселенной Вселенная становилась бесконечно пустой, и мы там замерзали, умирали. В закрытой Вселенной мы все умирали в пламени. Нам не привыкать... Мы, наверное, исчезнем — каждый из нас исчезнет персонально — гораздо раньше, но все-таки хорошо бы подумать о будущем Вселенной в целом. И вот это единственный кусок, ну... хороший. Благодаря тому, что Вселенная является самовосстанавливающейся, благодаря тому, что она производит всё новые и новые части Вселенной во всех ее возможных комбинациях, Вселенная в целом и жизнь в целом никогда не исчезнет — согласно тому, что мы думаем сейчас.

    Поскольку этой теории не существовало 25 лет назад, то надо понимать, что ко всему тому, о чём я говорил, надо относиться с некоторым чувством юмора. Но не ко всему, потому что за часть из этого люди уже получили Нобелевские премии, и они не захотели бы, чтобы вы относились с чувством юмора к этим вещам... Поэтому есть часть вещей, которые мы знаем наверняка. Наверное, что-то типа инфляции происходило. Наверное. Очень маловероятно, что мы можем объяснить все вещи, которые мы видим, без этого дела.

    Что касается всей этой многоликой Вселенной... Есть ли у нас вообще какие-нибудь экспериментальные свидетельства того, что это происходит? Учтем, что мы никогда в жизни не увидим те части Вселенной, где физика другая. А если мы увидим, то мы тут же умрем. Ну, я объяснил: потому что стенка нас накроет, мы перейдем в другой мир, после этого нас никто не спросит... Поэтому прогнозы экспериментального обнаружения частей Вселенной с другими свойствами — они не очень большие. Есть ли у нас какие-нибудь экспериментальные свидетельства тому, что эти части существуют?

    Но ведь для того, чтобы ответить на этот вопрос, — а сейчас, как вы уже видите, начался сезон вопросов и ответов — я задаю вопросы и я отвечаю... — так вот, был вопрос, который в свое время сформулировал Яков Борисович Зельдович. Вообще приятно подумать... Он был гигант науки, без которого всей картины не было бы. И вот он сказал следующее: есть ли какие-нибудь свидетельства — экспериментальные свидетельства — нестабильности протона? Нестабильность протона — это часть теории великого объединения. Что действительно не полностью есть разница между лептонами и барионами, она возникла за счет того, что возникло некое тяжелое скалярное поле, но в принципе протон мог распадаться. И люди сделали, там, пещеру, налили туда воду — воду, потому что она протоны создает, — поставили детекторы и стали смотреть, не распадается ли протон. Никто никакого распада не увидел, тем не менее, люди верили, что эта теория правильная. И вот Зельдович, как я сказал, спрашивал: есть ли какие-нибудь экспериментальные свидетельства распада протона? И тут же любил отвечать... Ну, я переформулирую его ответ немножко в более характерной форме, чем он сам обычно это говорил: «Да, есть экспериментальные свидетельства распада протона — это то, что параллельные линии не пересекаются». Вот примерно такая же реакция... «Что за ерунда? Тут протон, а тут параллельные линии...»

    А вот. Зачем нам понадобилась инфляционная Вселенная? Нам надо было объяснить, почему параллельные линии не пересекаются. Единственный способ это объяснить — это сделать эту стадию инфляции, за счет которой наша Вселенная становилась такой огромной. Но эта же стадия инфляции приводила к нулю исходный избыток протонов над антипротонами. До работы Сахарова 1967 года все нормальные люди верили, что Вселенная с самого начала имела больше протонов, чем антипротонов. После работы Сахарова 1967 года все нормальные люди, за исключением Сахарова, продолжали в это же верить. Это изменилось примерно в семьдесят шестом, седьмом, восьмом, девятом году, после того как возникла теория великого объединения и люди стали относиться к таким возможностям более серьезно, выяснили, что да, действительно, это можно сделать, можно образовать избыток материи над антиматерией, начиная со Вселенной, где всё будет симметрично, где не было избытка протонов над антипротонами. Так вот, для того чтобы это сделать, надо было бы, чтобы барионное число не сохранялось. А если барионное число не сохраняется, то ничто не мешает протону распадаться.

    Так вот, цепочка рассуждения такая: если вы хотите объяснить, почему параллельные линии не пересекаются, вы должны иметь инфляцию. Если вы имеете инфляцию, то прежнее объяснение того, почему у вас есть материя и нет антиматерии, — объяснение такое: а она с самого начала была, материя, — это объяснение не работает. Потому что даже если сначала была материя, после инфляции ее уже больше не было, и ее надо было создать. Единственный способ создать ее опирается на возможность, что барионы не сохраняются, барионное число не сохраняется. Таким образом, свидетельство несохранения барионного числа — это тот факт, что параллельные линии не пересекаются, потому что единственное объяснение этому делу — инфляция... Понятно, да? Так, общая логика...

    Это парадоксальный способ задавать вопросы и отвечать на них. Многие вопросы, которые инфляция пыталась решать, — их никто и не считал серьезными долгое время. Сейчас, когда мы говорим про эту «мульти-Вселенную», откуда мы знаем, что эта картина имеет смысл, помимо того, что она естественно возникает в теориях такого типа? В теории струн, в теории инфляции... Есть ли экспериментальное свидетельство? А посмотрите: масса электрона в 2000 раз меньше, чем масса протона. Почему? Масса протона в 100 раз меньше, чем масса дабл-ю-бозона (w-бозона) — примерно. Почему это так? Масса протона и масса нейтрона примерно одинаковы, не дай Бог нарушить этот баланс. Если мы изменим массу электрона в 2 раза, жизнь нашего типа станет невозможной. Если мы изменим заряд электрона в 2 раза, жизнь нашего типа станет невозможной. Если мы изменим энергию вакуума в 100 раз, жизнь нашего типа станет невозможной. Если мы изменим, рассогласуем соотношение между массой протона и массой нейтрона в несколько раз, чуть-чуть, жизнь нашего типа станет невозможной.

    Выглядит так, что наша Вселенная специально сделана для нас — и это называлось антропным принципом. И ни один уважающий себя физик никогда в течение долгого времени не рассматривал такие вопросы всерьез. До некоторого времени, то есть всю историю Советского Союза; я знаю одного человека, который в Советском Союзе занимался антропным принципом, — Иосиф Леонидович Розенталь. И ходил я на его доклады так, из вежливости, и слушал, что он такое говорит, и понимал, что это нелепо. А потом, когда инфляция возникла, выяснилось, что можно сделать эту вещь. А почему это нелепо? Потому что никто нам не дал много вселенных, Вселенная нам дана вот одна, и всё. Вот ты в ней живешь, значит, не задавай много вопросов.

    Выяснилось, что инфляционная космология дает возможность создать много разных типов Вселенной. И тогда в одной из них электроны, может быть, тяжелее, и электромагнитная константа связи, может быть, тяжелее — это вот то, с чем я и пришел на этот самый ученый совет, когда меня утверждали на старшего научного, и утвердили. Так вот, оказывается, возможно обсуждать вопрос о том, в какой Вселенной мы живем: мы живем в той Вселенной, где мы можем жить, а их 10 в тысячной (101000) типов, и в одном из них существовали электроны такие как нужно, протоны такие как нужно... То есть для того, чтобы мы могли задавать эти вопросы, для того чтобы нам не говорить, что кто-то специально сделал Вселенную, которая создана для нашего удобства, для того чтобы избежать давать такой ответ на этот вопрос, мы тогда должны сказать, что у нас было много возможностей выбора. И вот эта Вселенная, этот вариант теории, в котором есть много возможностей, он позволяет ответить на вопросы такого типа. То есть это экспериментальное свидетельство — космологическая постоянная, энергия вакуума ничтожно мала. Единственный способ, который мы сейчас знаем, объяснить это — предположить, что эта теория многоликой Вселенной справедлива. Я лучше на этом закончу, и дальше вопросы будете задавать вы. Спасибо. (Аплодисменты.)

    Ответы на вопросы после лекции


    Комментарии (58)
     
    #43
  5. lotar

    lotar Ословед

    Репутация:
    175
    lotar, 16 июн 2008
    Сверхпроводники ReFeAsO можно использовать для генерации очень сильных магнитных полей

    08.06.2008
    Последние теоретические и экспериментальные исследования физиков указывают на то, что недавно открытые высокотемпературные сверхпроводники с общей формулой ReFeAsO, возможно, могут использоваться в устройствах для создания постоянных сильных магнитный полей вплоть до 300 Тл.

    «Элементы» уже сообщали об открытии нового класса высокотемпературных сверхпроводников (ВТСП). Напомним, что они имеют общую формулу ReFeAsO (где Re обозначает какой-либо из редкоземельных металлов: Sm — самарий, Nd — неодим, Pr — празеодим, Ce — церий, La — лантан) и двумерную кристаллическую структуру подобную купратным (содержащим оксид меди) ВТСП. Эти сверхпроводники состоят из чередующихся слоев ReO и FeAs, «обеспечивающих» материал носителями зарядов и проводящими плоскостями соответственно. При этом критическая температура Tc сильно зависит от размера редкоземельного атома, входящего в состав ВТСП, и степени допирования фтором (то есть того, в какой пропорции атомы кислорода в ВТСП были заменены атомами фтора).

    Самое большое значение критической температуры в этом классе соединений (зафиксированное у SmFeAsO) составляет 55 К, что на 22 К ниже температуры кипения азота, что, конечно, пока не дает оснований надеяться на скорый прорыв в решении проблемы комнатной сверхпроводимости. Однако, как недавно было показано, этот новый класс ВТСП может найти применение в другой важной сфере прикладных научных исследований, а именно в создании магнитных полей с очень высоким значением магнитной индукции В.

    Но сначала немного теории. Важными характеристиками сверхпроводящего состояния являются длина когерентности ξ (то есть расстояние, на котором электроны взаимодействуют друг с другом, создавая сверхпроводящее состояние) и лондоновская глубина проникновения (см. London penetration depth) магнитного поля в сверхпроводник λ. Понятие длины когерентности было введено английским физиком Альфредом Пиппардом (Alfred Pippard) еще до создания теории БКШ (Бардина–Купера–Шриффера) и, как выяснилось с созданием микроскопической теории сверхпроводимости, грубо говоря означает размер ! куперовской пары. Понятие лондоновской глубины проникновения появилось в результате теоретических исследований братьев Хайнца и Фрица Лондонов (Heinz London и Fritz London) по электродинамике сверхпроводящего состояния, и дало возможность объяснить эффект Мейснера — явление выталкивание магнитного поля из сверхпроводника.
    С появлением в 1950 году феноменологической теории сверхпроводимости Гинзбурга–Ландау (см. также Ginzburg-Landau theory) оказалось, что параметры ξ и λ увеличиваются с ростом температуры по одинаковому закону. Поэтому отношение k = λ / ξ представляет собой константу и, как показал спустя 7 лет Алексей Абрикосов, является критерием деления сверхпроводников на две группы: сверхпроводники 1-го рода &! mdash; когда , и 2-го рода — когда . К сверхпроводникам 1-го рода относятся все чистые элементы-сверхпроводники, кроме ванадия и ниобия. Сплавы, интерметаллические соединения, а также вышеупомянутые ванадий и ниобий — это сверхпроводники 2-го рода. Их важным отличием от сверхпроводников 1-го рода является необычное поведение в магнитном поле. До некоторого значения Bc1 магнитное поле не попадает внутрь сверхпроводника (эффект Мейснера выполняется), при дальнейшем увеличении поля от Bc1 до некоторого значения Bc2 оно проникает в сверхпроводник в виде «нитей» с кольцевыми токами (их называют абрикосовс! кими вихрями; см. Abrikosov vortex), представляющих собой нормальный, несверхпроводящий участок размером порядка длины когерентности и несущих в себе квант магнитного потока Φ0 (

    По мере увеличения поля вихри постепенно заполняют весь сверхпроводник. Условно говоря, в образце одновременно сосуществуют сверхпроводящие и нормальные области — чем ближе магнитное поле к Bc2, тем больше нормальных областей. Такое состояние сверхпроводника называют резистивным (также его называют смешанным состоянием или фазой Шубникова). Несмотря на наличие нормальных областей, в целом образец остается сверхпроводящим, то есть по-прежнему проводит ток без сопротивления. Когда же значение магнитного поля достигает Bc2, сверхпроводимость полностью разрушается.

    Величины Bc1 и Bc2 называют первым (нижним) и вторым (верхним) критическим полем сверхпроводника. Как правило, значение первого критического поля невысокое и может составлять порядка сотых долей тесла (у Земли магнитное поле приблизительно равно 0,0005 Тл), зато второе поле значительно выше и достигает нескольких тесла (см. рис. 3). Это позволяет на практике использовать сверхпроводники второго рода как важный элемент в конструкции магнитов для создания постоянных сильных полей, не превышающих значение Bc2 (см. на рис. 2 схему сверхпроводящего магнита). Достаточно «запустить» в сверхпроводящую обмотку ток, и создаваемое этой обмоткой поле не будет уменьшаться.
    Поскольку, в силу своего химического состава, соединения ReFeAsO относятся к сверхпроводникам второго рода, естественным образом возник вопрос о магнитных свойствах этих материалов. Иными словами, каково значение Bc2 для ReFeAsO? Одними из первых таким вопросом задались физики из Национальной лаборатории высоких магнитных полей США. Они проводили измерения магнетосопротивления (в дальнейшем просто сопротивления) образца LaFeAsO0.89F0.11 (Тс = 26 К) размером 3 × 1 × 0,5 мм в присутствии сильного магнитного поля, силовые линии которого были направ! лены вначале перпендикулярно, а потом вдоль «лицевой» плоскости материала. Для измерений был использован так называемый гибридный магнит (hybrid magnet), способный создавать постоянное до 9 Тл, или переменное (импульсное) поле до 45 Тл. На рис. 4 приведены результаты измерений для различных температур, не превышающих Тс. Несовпадение графиков справа и слева объясняется анизотропией физических свойств данного материала, что присуще не только ему, но и вообще всем ВТСП.
    Проанализировав данные зависимости сопротивления образца от магнитного поля, исследователи построили графики функций B(T) для трех резистивных состояний: когда сопротивление LaFeAsO0.89F0.11 составляет 10, 50 и 90% от сопротивления в нормальном состоянии .
    Из графиков легко заметить, что второе критическое поле как минимум должно превосходить 60 Тл.

    Практически одновременно аналогичные измерения были проведены группой ученых из Австралии и Ирана для другого соединения из класса ReFeAsO — NdFeAsO0.82F0.18 (Тс = 51 К). Правда, в их распоряжении был магнит, способный генерировать магнитное поле не более 13 Тл, а измерения Bc2 проводились, когда силовые линии были направлены только вдоль исследуемого образца. Тем не менее удалось установить, что второе критическое поле для сверхпроводника NdFeAsO0.82F0.18 должно составлять уже около 300 Тл Насколько же перспективно использование данного класса ВТСП для создания магнитов с постоянным полем? В настоящее время наибольшее значение магнитной индукции, которое создает сверхпроводящий магнит, составляет приблизительно 26 Тл. Как видим, благодаря арсенид-железным сверхпроводникам есть возможность создавать поля как минимум в два (если речь идет о LaFeAsO0.89F0.11), а то и в 10 раз (в случае NdFeAsO0.82F0.18) сильнее ныне существующих. Поля такой величины на данный момент создаются лишь в импульсном режиме в течение небольшого промежутка времени — порядка микросекунды, а то и меньше. Возможное создание на основе этих ВТСП постоянных магнитов с такими значениями магнитной индукции несомненно найдет применение в разнообразных научных исследованиях, например в ускорителях заряженных частиц, в моделировании процессов внутр! и звезд, в процессах магнитного охлаждения и т. д.

    Однако остается открытым вопрос о механической устойчивости магнитов, генерирующих поля с такими гигантскими значениями индукции. Сильные магнитные поля способны запросто деформировать конструкцию магнита. Происхождение этого эффекта связано с действием так называемой силы Ампера — силы, с которой магнитное поле действует на проводник с током. Зависимость давления магнитного поля (см. Magnetic pressure) от его «силы» (индукции В) является квадратичной: например, если при В = 1 Тл создается давление 4 атмосферы, то увеличение магнитного поля в 100 раз увеличит давление до 40 тыс. атмосфер. Неизвестно, сможет ли выдержать такую нагрузку конструкция со сверхпроводящим магнитом. В любом случае, последнее сл! ово останется за технологами. Удастся ли им создать такие постоянные магниты, покажет время.
     
    #44
  6. К. А. В. 1989

    К. А. В. 1989 Guest

    Репутация:
    0
    К. А. В. 1989, 24 июн 2008
    Изготовлена первая экситонная интегральная схема


    В таких схемах свет трансформируется в квазичастицы – экситоны, представляющие собой связанные электронно-дырочные пары.
    При поглощении фотона в полупроводнике образуется электронно-дырочная пара, которая мигрирует в материале, пока не произойдет ее рекомбинация с образованием другого фотона. В отличие от фотона, экситоном, состоящим из двух заряженных частиц, можно управлять, прикладывая соответствующее напряжение к полупроводнику. Леонид Бутов (Leonid Butov) и его коллеги из Калифорнийских университетов в Сан-Диего и Санта-Барбаре использовали это свойство для создания первой экситонной интегральной микросхемы (EXIC).
    Изготовленный ими прибор состоит из трех идентичных переключателей, размещенных на подложке из арсенида галлия (GaAs). Каждый переключатель содержит два квантовых колодца, расстояние между которыми составляет несколько нанометров. Схема устроена таким образом, что при образовании экситона электрон и дырка занимают соседние квантовые колодцы.
    Разделенные таким образом электрон и дырка могут перемещаться вдоль квантовых колодцев на сотни микрометров, прежде чем рекомбинируют на выходе переключателя с образованием фотона. Ученые объединили переключатели в простую схему, имеющую вид трехлучевой звезды. Изменяя напряжение, приложенное к каждому переключателю, они смогли направлять экситоны по одному из ряда возможных путей. Главным недостатком экситонных интегральных схем на основе арсенида галлия является их низкая рабочая температура – около 40 К. Однако ученые надеются, что им удастся преодолеть это затруднение, подобрав более подходящий материал для изготовления экситонных схем, сообщает PhysicsWeb.

    Взято с CNEWS.RU
     
    #45
  7. К. А. В. 1989

    К. А. В. 1989 Guest

    Репутация:
    0
    К. А. В. 1989, 24 июн 2008
    Нанотрубки токсичны для простейших


    В статье сотрудников университета Ватерлоо в г. Онтарио (Канада), опубликованной в Nature Nanotechnology, описаны изменения, происходящие в микроорганизмах группы протисты (они же простейшие), при наличии в среде углеродных нанотрубок. Протисты - гетерогенная группа живых организмов, не относящаяся ни к растениям, ни к животным, они могут быть одноклеточными или многоклеточными. Протисты имеют размеры порядка нескольких микрометров, к ним относятся, например, амебы.
    Канадские исследователи изучали протисты вида Tetrahymena thermophila, который играет важную роль в экологии водной среды, поскольку он питается бактериями и тем самым производит очистку воды путем регулирования содержания в ней бактериальных микроорганизмов.
    Ученые приготовили растворы однослойных углеродных нанотрубок разных концентраций и добавили их в воду, содержащую простейшие. Результаты воздействия через три дня наблюдали с помощью оптической микроскопии. Оказалось, что нанотрубки, которые, как считалось раньше, вообще не должны растворяться в воде, способны проникать внутрь простейших и сильно влиять на их состояние. Это влияние, в зависимости от концентрации нанотрубок, может быть просто ограничением подвижности, но иногда наблюдается и гибель организмов. Однако чаще всего ученые наблюдали группирование (агрегацию) простейших. Было отмечен и один положительный фактор воздействия нанотрубок. Протисты под действием нанотрубок начинали выделять повышенное количество жидкости, содержащей белки и фрагменты клеток. Эта жидкость "склеивает" микроскопические частицы и тем самым приводит к увеличению их размера и ускорению седиментации. Вода, таким образом, быстрее очищается от взвешенных частиц.
     
    #46
  8. К. А. В. 1989

    К. А. В. 1989 Guest

    Репутация:
    0
    К. А. В. 1989, 24 июн 2008
    Предложена новая теория формирования грозовых разрядов


    Группа физиков из университета штата Пенсильвания (США) опубликовала в журнале Nature Geoscience результаты теоретического моделирования процессов формирования грозовых разрядов, которое описывает самые разные варианты проявления атмосферного электричества, в том числе и такие экзотические, как "голубые струи", которые распространяются в атмосфере снизу вверх, или "гром среди ясного неба" - случай разряда молнии в десятках километрах от основной грозовой тучи.
    В предыдущих теориях образования молний основное внимание уделялось процессам образования положительных и отрицательных зарядов внутри одной тучи. В результате доминирующей теорией стала сформулированная еще в XIX веке гипотеза о перераспределении зарядов при столкновении частиц льда разных размеров.
    Большой вклад в изучение молний внес многолетний эксперимент, проводимый NASA c использованием спутника TRMM. Космический мониторинг грозовых облаков дал ценнейшие результаты. За три года спутник получил изображения грозовых облаков и исследовал более 1 млн. молний.
    На спутнике TRMM (сокращение от Tropical Rainfall Measurement Mission - "Программа по измерению атмосферных осадков в тропиках") была установлена оптическая камера для регистрации вспышек молний и радар, работавший в микроволновом диапазоне и позволявший измерять количество льда в облаках. Исследование NASA позволило установить однозначную корреляцию между количеством льда в облаках и интенсивностью разрядов молний, а основным выводом о природе молний стало подтверждение гипотезы о возникновении положительных зарядов за счет потери электронов на мельчайших кристаллах льда, устремляющихся с восходящими потоками воздуха в верхнюю часть облака, и отрицательных зарядов на более тяжелых частицах льда, опускающихся в нижнюю часть облака.
    В новой модели, разработанной доктором Джереми Риуссетом (Jeremy Riousset) и его коллегами, впервые дается объяснение, почему молнии вообще способны покидать пределы облака - ведь, казалось бы, наиболее благоприятные условия для электрического разряда создаются именно внутри него. Моделирование показало, что направление, в котором будет происходить распространение разряда, зависит от исходного распределения зарядов внутри облака и их величины.
    Были просчитаны также различные варианты перераспределения зарядов в разных частях облака, выявлены факторы, определяющие этот процесс. Процессы, протекающие внутри грозового облака, приводят к накоплению зарядов, расположенных по краям облака, что создает возможность для молнии отклоняться от начального направления распространения и ударять в землю в нескольких километрах от места возникновения грозы ("гром среди ясного неба").
    "Голубые струи", согласно модели, возникают в результате разряда между заряженной верхней частью грозового облака и экранирующим его внешним заряженным слоем, причем разряд этого типа начинается через 5-10 секунд после возникновения резкого дисбаланса заряда внутри облака в результате обычного внутриоблачного или наземного разряда. По мнению ученых, разработанная ими компьютерная модель может использоваться метеорологами для прогнозирования типов молний, образующихся во время гроз.
     
    #47
  9. К. А. В. 1989

    К. А. В. 1989 Guest

    Репутация:
    0
    К. А. В. 1989, 24 июн 2008
    Создан метод записи битов в ДНК


    Дезоксирибонуклеиновая кислота (ДНК) может быть эффективным носителем цифровой информации, поскольку имеет большую вместимость, стабильность, устойчивость к возникновению ошибок, а также способность к естественному воспроизводству.
    Значительная часть ДНК, как правило, не входит в состав каких-либо генов, что дает возможность использовать ее для кодирования посторонних данных. Размер фрагментов ДНК невелик - одна нуклеотидная пара имеет длину всего 0,33 нм, - поэтому в крайне ограниченном пространстве ДНК можно хранить большой объем информации.
    Натаниель Портни (Nathaniel Portney) с коллегами из Университета Калифорнии предложили новый метод записи и извлечения цифровой информации из ДНК. Метод базируется на расщеплении молекулы ДНК с помощью ферментов рестрикции на фрагменты определенной длины. Статья, описывающая метод, называется "Length-based Encoding of Binary Data in DNA" ("Основанное на длине кодирование бинарных данных в ДНК").
    Новым способом ученым удалось закодировать 12 бит данных (4 буквы по 3 бита) во фрагменте ДНК длиной 110 нуклеотидов, а затем осуществить восстановление данных. Последовательность из четырех азотистых оснований нуклеотидов (ЦТАГ) кодировала 1, а из восьми (ЦТТАГЦАГ) - 0.
    Между указанными последовательностями ученые разместили сайты рестрикции. Помеченный радиоактивным фосфором участок с бинарным кодом "вшили" в ДНК. ДНК подвергли рестрикции, и затем "рассортировали" полученные фрагменты по длине методом электрофореза в агарозном геле. В результате исследователям удалось детектировать части исходного участка и восстановить бинарный код. Новый метод записи цифровой информации в ДНК не требует секвенирования, и поэтому является относительно недорогим.
     
    #48
  10. lotar

    lotar Ословед

    Репутация:
    175
    lotar, 30 июн 2008
    модель квирков

    Предложена модель квирков — новых элементарных частиц с необычным поведением

    27.06.2008


    Если попытаться разделить обычную кварк-антикварковую пару на две отдельные частицы, то между ними натягивается глюонная струна. Если струна становится слишком длинной, то она рвется, и в месте разрыва образуются новые кварк-антикварковые пары.



    Если в природе существует какое-то новое силовое поле и чувствующие его тяжелые частицы, то в определенных ситуациях они могут образовывать макроскопические силовые струны, которые можно будет заметить на Большом адронном коллайдере (LHC).

    В преддверии запуска Большого адронного коллайдера (он вступит в строй в конце лета 2008 года, но серьезная программа исследований на нём начнется только в 2009 году) в физике элементарных частиц сложилась не совсем обычная ситуация. С одной стороны, во всех проведенных до сих пор экспериментах Стандартная модель работала исключительно хорошо. Но с другой стороны, физики отчетливо понимают, что она не может быть окончательной теорией. Обязательно должна существовать какая-то более глубокая, более фундаментальная картина устройства нашего мира, а Стандартная модель является лишь приблизительной «проекцией» этой картины на известные сейчас частицы.

    Что это будет за более глубокая теория, физики пока не знают. В отсутствие прямых экспериментальных данных дотошному теоретику открывается богатый простор для конструирования разных «надстроек» над Стандартной моделью. Какая из них относится к реальности, а какая — нет, покажет эксперимент, но пока что физики пытаются «прощупать» самые разные возможности. Условно говоря, физики хотят знать все типы теорий, которые отстоят от Стандартной модели на один-два логических шага, на одно-два предположения.

    Одна из таких теорий была построена в вышедшем недавно препринте arXiv:0805.4642. Авторы этой статьи предложили модель с новыми гипотетическими частицами, названными ими квирками (quirks), которые, как выяснилось, должны обладать замечательными свойствами с точки зрения эксперимента.

    Слово «quirk» было выбрано авторами из-за «игры звуков» о и и. Квирки по своему поведению похожи на кварки (а по-английски слово «quark» произносится как [kwork]), только, как будет рассказано ниже, вместо сильного (strong) взаимодействия они связаны «струнным» (string) взаимодействием.

    Идея авторов этой работы проста и базируется на двух предположениях.

    1) Пусть в природе существует какая-то новая сила, взаимодействие нового типа, устроенное наподобие сильного взаимодействия между кварками внутри протона. Говоря научным языком, предполагается, что это некое новое калибровочное взаимодействие с ненарушенной неабелевой симметрией.* Эту силу до сих пор никто не замечал просто потому, что известные нам частицы к ней «равнодушны» (примерно так же, как и нейтрино «равнодушны» к электрическому и магнитному полям).

    2) Пусть существуют новые тяжелые частицы (это и есть квирки), которые эту силу чувствуют. Эти частицы обладают массой в области 1 ТэВ, так что они смогут рождаться на LHC, но не могли рождаться в более ранних экспериментах по причине недостаточной энергии столкновений.

    Вообще говоря, идея эта не нова. Самой первой публикацией, в которой обсуждается возможность нового взаимодействия с конфайнментом на макроскопических расстояниях, является, по-видимому, статья Льва Борисовича Окуня «Тетоны», опубликованная в 1980 году в Письмах в ЖЭТФ, т. 31, стр. 156. Однако в ней были набросаны лишь самые общие черты такой модели, в то время как в обсуждаемой здесь работе (которая должным образом ссылается на статью Л. Б. Окуня) подробно разобрана динамика этой модели и возможные ее проявления в эксперименте.

    Возникает вопрос: как такие квирки будут проявлять себя на LHC? Оказывается, они будут оставлять совершенно необычные следы в детекторе, и именно перечислению возникающих тут возможностей посвящена статья.

    Но прежде чем браться за квирки, будет полезно напомнить, как ведут себя самые обычные кварки, сидящие внутри протона. Кварки притягиваются друг к другу за счет сильного взаимодействия, которое обеспечивает глюонное поле. Это глюонное поле обладает многими необычными свойствами, и самое замечательное из них — конфайнмент («пленение кварков»).

    Конфайнмент — это явление, которое не позволяет одному кварку вырваться из окружения своих собратьев и существовать самостоятельно. Как только какая-то сила начнет вытягивать один кварк из протона (или растягивать кварк-антикварковую пару, как это показано на рис. 1), то глюонное поле перестраивается в виде силовой струны, которая в буквальном смысле натягивается между кварками. (Осторожно: описываемые здесь глюонные струны не следует путать с суперструнами или с космическими струнами!) Если сила, растягивающая кварки, невелика, то струна пересиливает ее и возвращает кварки на место. Если же растягивающая сила велика, то глюонная струна становится неустойчивой и рвется, причем на месте разрыва рождаются новые кварк-антикварковые пары. Эти кварки быстро группируются в мезоны, а мезоны уже могу! т удалиться друг от друга на любое расстояние.

    Поведение гипотетической квирк-антиквирковой пары при их разделении. Между ними тоже натягивается силовая струна, но только она не может порваться, потому что квирки слишком тяжелые. В результате струна может вырасти до макроскопических размеров.



    Ключевой момент: масса обычных кварков маленькая, поэтому даже несильно растянутая струна обладает достаточной энергией для рождения кварк-антикварковых пар. Именно поэтому глюонная струна не может стать слишком длинной — ей энергетически выгодней разорваться на несколько частей, чем далеко тянуться от одного кварка к другому.

    Теперь обратимся к новым гипотетическим частицам — квиркам. Для них многое из описанного выше тоже справедливо. У нового взаимодействия тоже обязан быть конфайнмент (это следует из неабелевости теории), и если в каком-то жестком процессе родились и стали разлетаться квирк с антиквирком, то между ними тоже натягивается силовая струна — правда, не глюонная, а состоящая из нового силового поля.

    И тут возникает важное отличие от кварков: из-за большой массы квирков струна не может разорваться (см. рис. 2). Разрыв струны мог бы произойти только с образованием квирк-антиквирковой пары, но для ее образования требуется запасти очень большую энергию в очень маленьком объеме. А струна со слабым натяжением, пусть даже и очень длинная, этого сделать не может.

    С точки зрения эксперимента возникает ряд очень интересных возможностей, которые зависят от силы натяжения струны (это свободный параметр теории, который мы заранее не знаем, поэтому вольны анализировать разные случаи).

    Если натяжение струны очень слабое, то она может растянуться до макроскопической длины. Получится поразительный объект — две тяжелые стабильные элементарные частицы, связанные неразрушимой силовой нитью длиной в сантиметры, метры, километры! Обычная материя эту силовую нить совершенно не ощущает, и ее присутствие можно заметить в детекторе лишь по тому, как квирк и антиквирк крутятся друг вокруг друга. На рис. 3 показаны типичные траектории этих частиц в детекторе для силовой струны длиной в метры или сантиметры.

    Если же натяжение струны умеренно сильное (но всё равно не настолько сильное, чтобы разорваться), то ее размеры будут мезоскопическими — то есть много больше размеров самих частиц, но много меньше пространственного разрешения детекторов (например, порядка микрона). Тогда квирк-антиквирковая пара будет выглядеть в детекторе как одна стабильная частица, однако ее масса будет сильно меняться от случая к случаю.

    Такого типа частицы физикам еще никогда не встречались в эксперименте (хотя нечто похожее — так называемые нечастицы — уже предлагалось теоретиками год назад). Авторы работы подчеркивают, что методы обработки данных, которые предполагается использовать на LHC, «не настроены» на такие возможности и вполне могут «проморгать» столь необычные объекты.

    В заключение стоит подчеркнуть, что большинству физиков эта и другие подобные теории, конечно, кажутся очень экзотическими и маловероятными. Однако в их разработке есть определенная польза: они помогают осознать, в какие стороны в принципе позволительно двигаться теоретикам и какие последствия их ожидают. Опыт, накопленный при изучении таких диковинных теоретических конструкций, может оказаться полезным при построении той глубинной физической картины мира, которая придет на смену Стандартной модели.

    Источник: Junhai Kang, Markus A. Luty. Macroscopic Strings and «Quirks» at Colliders // препринт arXiv:0805.4642 (29 May 2008).

    Игорь Иванов

    * Небольшое пояснение про неабелевы калибровочные теории. Взаимодействия частиц тесно связаны с понятием симметрии. Электромагнитное, сильное и слабое взаимодействия не постулируются отдельно от частиц, а как бы сами собой возникают из требования симметричности теории относительно внутренних преобразований (то есть изменений, не связанных с перемещением в реальном пространстве). Взаимодействия, которые возникают таким образом, называются калибровочными. На языке математики симметрии описываются с помощью групп преобразований (см. Теория групп — наука о совершенстве). Есть два больших класса групп — абелевы и неабелевы. В абелевых группах результат двух последовательных преобразований не зависит от того, в каком порядке они выполняются, а в неабелевых &mdash! ; зависит. Иными словами, в неабелевой группе разные преобразования «мешают» друг другу.

    Как следствие, если теория взаимодействий основана на неабелевой калибровочной группе, то разные кванты силовых полей будут «мешать» друг другу, взаимодействовать друг с другом. Неабелево силовое поле притягивает друг к другу не только частицы вещества, но и разные части самого поля. Условно можно это представить так, словно силовые линии поля притягиваются друг к другу. Именно это притяжение между силовыми линиями сильного взаимодействия и заставляет их сжиматься в струну, когда расстояние между кварками становится большим.

    Всё это происходит, когда симметрия «актуальная», ненарушенная; такая ситуация имеет место, например, в теории сильных взаимодействий. Но симметрия может нарушиться за счет какого-то механизма (например, электрослабая симметрия нарушена за счет хиггсовского механизма). Доказано, что, когда калибровочная симметрия нарушается, силовое поле уже не может простираться слишком далеко, и у него пропадает способность образовывать силовые струны. Чтобы такого не происходило, в квирковой модели постулируется, что симметрия не нарушена.
     
    #49
  11. К. А. В. 1989

    К. А. В. 1989 Guest

    Репутация:
    0
    К. А. В. 1989, 3 июл 2008
    Получен атом макроскопических масштабов


    Нильс Бор предложил в 1913 г. первую теоретическую модель атома водорода, согласно которой электрон движется лишь на разрешенных орбитах вокруг атомного ядра. По аналогии с движением планет вокруг Солнца модель получила название планетарной, и до сих пор изображение с ядром и орбитами электронов вокруг него остается символом атомной науки и техники, хотя сейчас для описания движения электронов привлекаются в основном понятия квантовой механики, в частности, волновой функции.
    Модель Бора оказалась очень плодотворной для физики, она смогла объяснить химические и оптические свойства атомов. Нильс Бор получил в 1922 г. Нобелевскую премию за создание планетарной модели. Казалось бы, сейчас уже нет необходимости возвращаться к этой модели, поскольку уже созданы методы расчета квантовомеханического состояния электронов в атомах и молекулах. Однако исследователи из университета Райса в Хьюстоне (США) решили продемонстрировать, что подход Бора не только имеет право на существование, но и дает возможность наблюдать атомы в макроскопическом масштабе. Их статья опубликована в последнем номере журнала Physical Review Letters.
    Барри Даннинг (Barry Dunning) и его коллеги использовали предсказанную Бором возможность для электрона перемещаться с одной разрешенной орбиты на другую при поглощении энергии. Они облучали атом калия серией ультракоротких импульсов лазерного излучения и добились в итоге высоковозбужденного (близкого к состоянию ионизации) атома, размеры которого достигали 1 мм. Проф. Даннинг заявил, что из эксперимента однозначно следует вывод о том, что электроны в этом случае находятся на локализованных орбитах и ведут себя как классические частицы. Работа американских физиков, таким образом еще раз подтвердила двойственную природу микрочастиц и справедливость принципа соответствия Бора, сформулированный им в 1923 г. Согласно этому принципу, поведение квантовомеханической системы стремится к классической физике в пределе больших квантовых чисел.

    P. S. Взято с CNEWS.RU, по поводу размеров атома не спрашивайте - сам удивлён.
     
    #50
  12. гвоздик

    гвоздик

    Репутация:
    11
    гвоздик, 3 июл 2008
    добились в итоге высоковозбужденного (близкого к состоянию ионизации) атома, размеры которого достигали 1 мм.
    :blink:
     
    #51
  13. К. А. В. 1989

    К. А. В. 1989 Guest

    Репутация:
    0
    К. А. В. 1989, 3 июл 2008
    Во-во, и я про тоже. Может опечатка.
     
    #52
  14. К. А. В. 1989

    К. А. В. 1989 Guest

    Репутация:
    0
    К. А. В. 1989, 3 июл 2008
    Создан безупречный шар

    В попытке заново определить эталон массы группа ученых создала шар высочайшей геометрической точности.


    Как сообщает New Scientist, международная группа ученых разработала и создала эталон килограмма в виде шара кристаллического кремния, выполненного с недостижимой прежде точностью.
    Идея создания эталона шара возникла как результат переосмысления принципов создания эталона массы - единственного на сегодняшний день эталона метрической системы мер и весов, определенного не через физические константы, но зафиксированного в виде материального предмета. В ситуации быстрого прогресса средств измерения такой метод определения эталона стал анахронизмом.
    Выяснилось, что масса эталона килограмма, зафиксированного в виде гири из платины и иридия еще 120 лет назад и хранящегося в Париже, стала изменяться и уже заметно отличается от массы 40 его собственных копий, имеющихся в разных странах мира. Природа таких изменений, и факторы, их вызывающие, не вполне понятны, однако становится ясно, что эпоха материальных эталонов осталась в прошлом.
    Международная группа ученых, объединившаяся в рамках проекта «Авогадро» (Avogadro project), предложила определить килограмм через определенное количество атомов кремния, его составляющих.
    Выяснилось, что это – непростая задача. Для решения задачи потребовалось попутно создать сверхточные кремниевые сферы – промежуточный этап на пути создания физически корректного эталона массы.
    Для определения массы килограмма через количество атомов, его составляющих, было решено сделать образец из монокристалла чистого моноизотопного кремния (Si-28) с массой, соответствующей массе имеющегося платино-иридиевого эталона, затем определить его пространственный объем, с помощью методов рентгеновской кристаллографии определить расстояние между атомами в кристаллической решетке и, тем самым, его плотность, и вывести из них количество атомов, содержащееся в эталоне.
    Для упрощения процедуры измерений решено было сделать эталон в виде сферы.
    В создании эталона были задействованы российские ученые – сверхчистый кремний для них был получен путем очистки его в центрифугах, ранее использовавшихся для разделения изотопов урана. Затем сверхчистый кремний был отправлен в немецкий метрологический институт, в котором из этого кремния был выращен монокристалл. Наконец, он был превращен в сферу недостижимой прежде геометрической точности в австралийском центре сверхточной оптики.

    Контроль качества поверхности шара осуществлялся посредством измерения расстояний между 60 тыс. пар точек с помощью оптического интерферометра.
    В результате получился эталон массы килограмма, выполненный в виде кремниевого шара диаметром около 93,75 мм.
    Качество его поверхности таково, что после увеличения шара до размеров шара земного размер шероховатости его поверхности не превосходил бы 12 – 15 мм (в реальном масштабе они не превышают 0,3 нм), а регулярные отклонения от геометрической сферы не превышали бы 2 – 3 м.
    Измерения количества атомов в шаре, выполненные независимо тремя различными группами, позволили бы переопределить эталон массы и установить ошибку измерений.
    Однако появится ли в результате новый эталон массы, пока неясно. Скептики утверждают, что, несмотря на очевидные технологические достижения, в данном случае один макрообъект в качестве эталона заменен другим, но суть подхода от этого не изменилась. Предполагается попытаться определить эталон килограмма через электромагнитное взаимодействие. Более подробная информация о создании нового эталона килограмма будет представлена на портале Исследования и разработки – R&D.CNews.

    P. S. Во вложениях:

    Изображение шара и две статьи об этой проблеме, которые публиковались на CNEWS раньше.
     
    #53
  15. гвоздик

    гвоздик

    Репутация:
    11
    гвоздик, 9 июл 2008
    Я чего удивился то.. Поскольку размер атома определятся размером орбитали электрона, то предположу что в эксперименте была именно она (орбиталь) и увеличена.

    Но как такое возможно? Ведь известно, что при получении внешними электронами энергии они, как правило, переходят в свободное состояние, то есть покидают атом совсем. Здесь же ничего подобного не произошло, поскольку электроны, насколько я понял, продолжали вращаться вокруг атома, и это при том, что их орбита увеличилась в n-ое (боюсь сказать какое!) число раз.:idontno:
    ПС : хз может и опечатка :( , хотя все может быть, электрон такой баловник :D.
     
    #54
  16. walrus

    walrus Ословед

    Репутация:
    97.098
    walrus, 9 июл 2008
    Там вроде реально получали такие орбиты 10000 или более. Просто электрон рядом с протоном как-то запускают, но на большой энергии, а потом ещё как-то фиксируют, видимо, по сумме энергий фотонов. Так что всё норм.
     
    #55
  17. lotar

    lotar Ословед

    Репутация:
    175
    lotar, 19 июл 2008
    КВАНТОВАЯ ИНФОРМАТИКА: ПРОШЛОЕ, НАСТОЯЩЕЕ, БУДУЩЕЕ

    КВАНТОВАЯ ИНФОРМАТИКА: ПРОШЛОЕ, НАСТОЯЩЕЕ, БУДУЩЕЕ
    Александр Холево
    Современным подросткам трудно представить себе мир без мобильных телефонов, компьютеров, цифровых фотокамер, MP3-плейеров и прочих атрибутов века информационных технологий. А между тем исторический момент, предопределивший принципиальный переход к «цифре», определяется довольно точно

    Цифровая революция началась в 1948 г., когда был изобретен транзистор, открывший дорогу миниатюризации электронных устройств и радикальному снижению материальных и энергетических затрат на создание систем обработки информации (hardware). В том же году был опубликован основополагающий труд американского инженера-математика Клода Шеннона, отца теории информации, обосновавшей переход к цифровому представлению и цифровой обработке данных (software). Еще раньше появились работы нашего ученого В.А. Котельникова по основам помехоустойчивой связи, которые предвосхитили некоторые идеи Шеннона.

    Сильной и в то же время слабой стороной классической теории информации, обеспечивающей ее универсальность, стало абстрагирование от содержания и природы передаваемых данных. Такую теорию интересуют лишь два аспекта: количество передаваемой информации и качество передачи. Названные характеристики связаны обратной зависимостью: чем точнее мы хотим передать сообщение при наличии помех в канале связи, тем более замедляется передача. Особое внимание в теории информации уделяется оптимальным характеристикам, таким как пропускная способность канала, т.е. максимально возможная скорость передачи при использовании кодирования-декодирования, обеспечивающего исправление ошибок, вызванных помехами.

    Информация физична

    Один из пионеров физической теории информации Рольф Ландауэр, долгие годы проработавший в IBM, утверждал, что информация физична, и отвлекаясь от ее физической природы, исследователь делает далеко не всегда оправданное допущение. Фундаментальный носитель информации — это электромагнитное поле, например в форме видимого света, либо радиоволны. В обычных условиях помехи при передаче сигнала обусловлены хаотическим поведением квантов поля (фотонов), которое имеет тепловую природу. Оказывается, снижение температуры до абсолютного нуля не приводит к полному исчезновению шума: на первый план выходят так называемые вакуумные флуктуации, обусловленные квантовой природой излучения. Квантовые свойства света особенно ярко проявляются в когерентном излучении лазера, которое отличается от излучения естественного теплового источника так же, как упорядоченная колонна солдат отличается от пестрой ярмарочной толпы. Уже в 1950-х гг. ученые задумались о фундаментальных квантовомеханических пределах точности и скорости передачи информации. Дальнейшее развитие информационных технологий, достижения квантовой оптики, электроники и супрамолекулярной химии, исследующей кибернетические свойства высокомолекулярных соединений, заставляет предположить, что в скором будущем такие ограничения станут главным препятствием для дальнейшей экстраполяции существующих технологий и принципов обработки информации.

    Новые вопросы к старой теории

    Чтобы облечь качественные выводы физиков в точную форму, потребовался синтез математических идей теории информации и квантовой механики. В 1960-х гг. уже существовали квантовая статистическая механика и квантовая теория поля, однако эти дисциплины нацелены на иной круг задач, связанных с динамикой квантовых систем. Так, в статистической механике возникает и широко используется ближайший родственник информации — энтропия, однако она выступает там лишь как термодинамическая характеристика. Информационный смысл квантовой энтропии был прояснен в работе Бена Шумахера, посвященной квантовому сжатию данных и опубликованной в Physical Reviews в 1995 г. Ближе всего к потребностям еще не родившейся квантовой теории информации была теория квантового измерения, над которой работал Джон фон Нейман. Однако она нуждалась в существенном усовершенствовании и развитии.

    Любая схема передачи информации состоит из передатчика (возможно, включающего в себя устройство, кодирующее сообщения), канала связи и, наконец, приемника (вместе с возможным декодирующим устройством). Обычно все три названные компоненты описываются на языке классической физики и статистики. Посылаемый передатчиком сигнал (для простоты 0 или 1) подвергается в канале случайным помехам и может исказиться. Поэтому сигнал на выходе приемника не обязательно совпадает с посланным сигналом, а качество связи характеризуется вероятностью ошибки. Обычно требуется разработать такую конструкцию приемника, которая обеспечивала бы оптимальное обнаружение или оценивание посланного сигнала для заданного канала и метода передачи. Подобные задачи решаются методами теории статистических решений. Теория информации преследует более амбициозную цель: для заданного канала с помехами разработать такие методы кодирования и декодирования сигнала, которые позволили бы передавать за единицу времени как можно больше сообщений, практически неуязвимых для помех. Предельная максимальная скорость такой передачи называется пропускной способностью канала. Придуманы хитроумные методы исправления ошибок, которые пригодны для передачи и надежного хранения информации.
    Сцепленность играет роль «катализатора», выявляющего скрытые информационные ресурсы квантовой системы, но сама по себе не позволяет передавать информацию: это означало бы мгновенную передачу на конечное расстояние

    Изучать квантовые каналы связи необходимо, т.к. всякий физический канал в конечном счете является квантовым. В квантовом мире передатчик приготовляет квантовое состояние носителя информации в зависимости от поступающего сообщения. Например, передатчиком может быть лазер, который излучает либо вертикально, либо горизонтально поляризованные фотоны. Посылаемый двоичный сигнал кодируется соответствующим состоянием поля излучения. Однако в канале связи он, как правило, искажается, и на приемник поступают состояния, отличные от посланных передатчиком. Приемник осуществляет квантовое измерение той или иной физической величины, возможно, с последующей обработкой получаемой классической информации. Конечный результат такого измерения — выходной сигнал 0 или 1, дающий более или менее достоверную оценку посланного исходного сигнала, причем качество линии связи вновь характеризуется вероятностью ошибки. Аналогия с классической линией связи очевидна. Таким образом, возникает потребность в квантовой теории статистических решений и методах оптимального оценивания параметров квантовых состояний на основании результатов измерений. Очевидна и перспектива создания методов кодирования-декодирования, учитывающих квантовомеханическую природу носителя информации, которые позволяли бы компенсировать негативное влияние квантового шума. Возвращаясь к статистической механике, заметим, что такие процедуры вызывают ассоциацию со знаменитым «демоном Максвелла», создающим порядок из беспорядка, однако перед ними ставится более скромная, зато достижимая цель: сохранение островка порядка в море хаоса. Величина этого островка и определяет пропускную способность канала связи.

    Пристальное рассмотрение понятия квантового измерения с информационно-статистической точки зрения привело к новому парадоксальному выводу: добавление независимого квантового шума в наблюдения позволяет увеличить количество получаемой информации. Парадокс в том, что такого никогда не бывает в классической статистике: добавление шума (рандомизация) только портит качество наблюдений. В квантовой оптике есть пример реальной измерительной процедуры, использующей независимый источник квантового шума (своего рода квантовую рулетку). Речь идет об оптическом гетеродинировании, при котором излучение, несущее информацию, складывается с опорным излучением от независимого источника. Такого рода процедура позволяет осуществить приближенное совместное измерение обеих компонент сигнала, электрической и магнитной, несмотря на то, что квантовая теория запрещает их точную совместную измеримость. С математической точки зрения такие измерения описываются переполненными системами векторов, отличными от полных ортонормированных систем (базисов) стандартной теории измерения фон Неймана. В частности, статистика оптического гетеродинирования описывается переполненной системой когерентных векторов, столь эффективно использованных в работах нобелевского лауреата Роя Глаубера. Всякую переполненную систему векторов в пространстве H можно описать как проекцию на H базиса в некотором объемлющем пространстве K, получающемся из H добавлением независимых (рандомизующих) степеней свободы. Оказалось, что переполненные системы представляют собой лишь частный случай более общего понятия вероятностной операторнозначной меры, исследованного советским математиком М.А. Наймарком еще в 1940 гг. и нашедшего естественное место в квантовой теории статистических решений, созданной в 1970–1980-х гг. ПРИРОДНЫЙ КВАНТОВЫЙ КОМПЬЮТЕР

    Не исключено, что в природе квантовый компьютер давно уже существует. Высказывается мнение, что элементы квантового компьютинга присутствуют в человеческом мышлении, и тогда квантовая информатика открывает новые перспективы для принципиального объяснения возможных алгоритмов мышления. Остановимся на тех особенностях человеческого мышления, которые действительно вызывают ассоциации с квантовыми закономерно-стями

    1) Способность целостного восприятия информации в противоположность разложению на составляющие свойства; возможно, глаз способен принимать не только классические состояния входящего света, но и непосредственно квантовые состояния фотонов, чем и объясняются особая мощь и пропускная способность визуальных коммуникаций, а также их органическая связь с распознаванием образов

    2) Сходство дополнительности между действием и размышлением и квантовой дополнительностью между положением и скоростью, на которое обращал внимание еще Нильс Бор в своих физико-философских эссе. Примечательно, что при разработке концепции квантовой дополнительности Бор исходил из уже существовавшей аналогичной концепции витализма в биологии

    3) Черты сцепленности (или нелокальности), когда информация, содержащаяся в объединении подсистем некоторой сложной системы, превосходит арифметиче-скую сумму количеств информации, получаемых из подсистем

    4) Феномен сознания-подсознания. Трудно удержаться от такой (конечно, крайне упрощенной) аналогии: некоммутативная алгебра квантовомеханических наблюдаемых, в которой в каждый момент времени «сканируется» некоторая доступная наблюдению коммутативная (классическая) подалгебра

    5) Органическое сочетание аналоговых и цифровых методов, эффективный параллелизм обработки информации

    Разумеется, эти и другие соображения, такие как наличие интуиции и свободной воли, носят косвенный характер и не влекут с неизбежностью вывода, что в мозгу человека или в нервной системе других живых существ присутствуют «квантовые микрочипы» или другие квантово-физические механизмы, ответственные за неклассические вычисления и соответствующее поведение. Но они, возможно, свидетельствуют о том, что работа мозга принципиально несводима к функциям сколь угодно совершенного и сложного классического суперкомпьютера, и тогда теоретические модели таких систем должны принимать во внимание эту неклассичность


    Эффективность математики

    Квантовая теория статистических решений и информации опирается на далеко идущее логическое развитие математического аппарата квантовой физики, дополненного статистической интерпретацией. Существуют и другие интерпретации, например многомировая, но все они слишком экзотичны, чтобы серьезно конкурировать со статистической, которую называют еще «минимальной», поскольку она опирается только на возможную в принципе статистику квантовых измерений и не привлекает специальных допущений о механизме возникновения этой статистики. Статистическая интерпретация настолько органично сплавлена с математической структурой квантовой теории, что возникает как бы сама собой. Те объекты гильбертова пространства, которые ранее казались чисто математическими абстракциями, благодаря статистической интерпретации становятся двойниками физических идей и понятий. Так произошло с упомянутыми выше переполненными системами и вероятностными операторно-значными мерами, так же произошло и с абстрактным понятием вполне положительного отображения из теории операторных алгебр, которое оказалось адекватной математической моделью квантового канала с шумом.

    Исторически квантовая теория информации зародилась при рассмотрении фундаментальных квантовомеханических ограничений. Простейшим из них является известное с 1920-х гг. соотношение неопределенностей Гейзенберга. В 1970-е гг. были установлены более тонкие математические факты, такие как энтропийное неравенство, ограничивающее сверху количество информации, которое может быть передано носителем, подчиняющимся законам квантовой механики (например, излучением лазера). Однако в 1980-1990-е гг. ученые пришли к выводу, что квантовая теория не только вводит свои ограничения, но и открывает принципиально новые возможности, такие как квантовая телепортация и другие эффективные коммуникационные протоколы, физически стойкие протоколы квантовой криптографии, эффективные алгоритмы для решения трудных вычислительных задач и др. Идеи эти появились в результате логического развития аппарата квантовой теории, снабженного статистической интерпретацией, а если принять, что квантовая теория и ее минимальная интерпретация имеют неограниченную применимость, то нет оснований сомневаться и в принципиальной возможности новых эффективных приложений квантовой теории. Впрочем, все не так просто.
    Квантовый компьютер — это гипотетическое вычислительное устройство, использующее специфически квантовые эффекты и намного превосходящее по своим возможностям любую классическую вычислительную машину

    Конференции по квантовой теории информации все еще сохраняют приятную и довольно редкую особенность: они объединяют как специалистов-теоретиков, вплоть до специалистов в весьма абстрактных разделах математики, так и физиков, непосредственно причастных к эксперименту. На одной из таких конференций ученый-экспериментатор начал доклад с иллюстрации, на которой были изображены роскошный «Кадиллак» с надписью «теория» и скромный «Трабант» — «эксперимент». Отрыв теории от экспериментальных реализаций действительно велик. Всякий эксперимент, предполагающий манипуляции состояниями индивидуальных микрочастиц, чрезвычайно сложен из-за их сверхчувствительности к любым внешним воздействиям. Более того, трудности реализации предписаний квантовой теории заложены и в самом ее фундаменте: она предоставляет математическую модель для любого реально наблюдаемого феномена микромира, однако дает лишь самые общие намеки на то, как можно двигаться в обратном направлении — от элемента математической модели к его материальному прототипу. В непревзойденном трактате Поля Дирака «Принципы квантовой механики» эта проблема описана следующим образом: «Возникает естественный вопрос: может ли быть измерена любая наблюдаемая? Теоретически на этот вопрос можно ответить — да. Практически может оказаться, что весьма затруднительно построить такой прибор, который мог бы измерять некоторую определенную наблюдаемую. Возможно, что экспериментатор не может сказать, как построить такой прибор, однако теоретик всегда может вообразить, что такое измерение может быть произведено». Другими словами, нет ни регулярного способа дать конструктивное описание соответствующей измерительной процедуры, ни даже гарантии, что такое описание возможно в принципе. Остается только верить, что оно рано или поздно будет найдено. Приведем пример из квантовой оптики. В теории хорошо известны состояния излучения с определенным числом фотонов (их называют состояниями Фока). Сегодня никто не сомневается в существовании фотонов, однако до сих пор не был известен способ генерирования таких состояний. Имелись теоретические предложения, в частности, основанные на использовании оптической обратной связи, и лишь недавно японским ученым удалось осуществить это в эксперименте. А ведь, в частности, надежность протокола квантовой криптографии основана на предположении, что секретный ключ распределяется с помощью единичных фотонов. В качестве реального источника используется слабый когерентный сигнал лазера, для которого вероятность появления более одного фотона мала. Но это оставляет лазейку для потенциального перехватчика «лишних» фотонов.

    К настоящему моменту уже осуществлен ряд принципиальных опытов по квантовой обработке информации. Упомянем лишь известные эксперименты А. Цайлингера и Дж. Кимбла по телепортации состояний фотонов, а также действующие квантово-криптографические линии, реализованные группами Н. Джизена в Швейцарии и С.Н. Молоткова в России. Исследования теоретических и экспериментальных аспектов квантовой информатики ведутся во всех развитых странах, в том числе и в России.

    Два отличия

    Фундаментальные различия между классическим и квантовым мирами можно выразить в двух словах: дополнительность и сцепленность. Дополнительность означает наличие таких свойств одного и того же объекта, которые принципиально недоступны совместному наблюдению. Различные физические измерения микрообъектов осуществляются разными макроскопическими экспериментальными установками, каждая из которых предполагает сложную и специфичную организацию пространственно-временной среды. Способы такой организации, отвечающие разным наблюдаемым свойствам, могут быть взаимно исключающими, т.е. дополнительными. На языке математики взаимно дополнительные величины, такие как координата и импульс, электрическое и магнитное поля, компоненты спина, изображаются неперестановочными (некоммутирующими) операторами. Для них имеют место соотношения неопределенностей, запрещающие точную совместную измеримость, так что именно дополнительность ответственна за специфические ограничения информационного характера.

    Дополнительность также приводит к тому, что состояния квантовой системы не могут быть заданы простым перечислением свойств, т.е. точкой в каком-либо фазовом пространстве. Вместо этого состояния описываются векторами в некотором линейном (гильбертовом) пространстве H, причем всякая суперпозиция (линейная комбинация) векторов также задает состояние.

    Новые необычные возможности квантовых систем, как правило, связаны со сцепленностью (entanglement; в русской литературе используется также перевод «запутанность», «перепутанность»). В ее основе лежат необычные свойства составных квантовых систем, которые описываются тензорным (а не декартовым, как в классической механике) произведением HA Z HB пространств подсистем. В силу принципа суперпозиции пространство составной системы AB наряду с векторами-произведениями A Z B должно содержать и всевозможные их линейные комбинации. Состояния составной системы, задаваемые векторами-произведениями, называются несцепленными, а все прочие — сцепленными. Сцепленность представляет собой квантовое свойство, отчасти родственное классической коррелированности, однако к ней не сводящееся (в физике говорят о корреляциях Эйнштейна-Подольского-Розена). Сцепленные состояния — не редкость в квантовой физике: обычно они возникают в результате взаимодействия или распада квантовых систем. Однако квантовая теория не исключает возможности сцепленного состояния для пары частиц, которые, однажды провзаимодействовав, разлетелись на макроскопическое расстояние. На необычные «телепатические» свойства такой пары и указали в свое время Эйнштейн, Подольский и Розен. Недавние эксперименты подтверждают возможность искусственного создания внутренней сцепленности фотонов и даже массивных микрочастиц на расстояниях порядка нескольких метров, хотя такое явление никогда не наблюдается в естественных условиях и противно самой природе классического макроскопического мира. Тот способ описания окружающего мира, который лежит в основе доквантовых представлений о пространстве-времени, получил название «локальный реализм». На чем бы ни основывалось объединение квантовой механики и общей теории относительности — на некоммутативной геометрии, теории струн, нелинейной квантовой механике, траекторных или иных подходах — оно должно будет разрешить противоречие между квантовой сцепленностью и локальным реализмом.

    Квантовые каналы и информация

    Большой раздел квантовой теории информации посвящен количественной теории сцепленности. Оказывается, сцепленность можно измерять количественно, как температуру или другую физическую характеристику состояния. Более того, ее можно концентрировать, «разбавлять», пересылать; она может существовать в латентной «связанной» форме и проявляться лишь в особых обстоятельствах.

    В случае составных квантовых систем имеет смысл говорить не только о сцепленных и несцепленных состояниях, но и о соответствующих измерениях. При этом если квантовые системы A и B находятся в несцепленном состоянии, то максимальное количество информации о состоянии, получаемое из измерений составной системы AB, может быть больше суммы количеств информации, получаемых из измерений систем A и B. Такая неклассическая строгая супераддитивность информации проявляется при исследовании пропускной способности квантового канала связи.

    В квантовом случае само понятие пропускной способности разветвляется, порождая целый «зоопарк» информационных характеристик канала, зависящих от вида передаваемой информации (квантовой или классической), а также от дополнительных ресурсов, используемых при передаче. Остановимся кратко на четырех главных обитателях этого зоопарка. Канал задается вполне положительным отображением T, преобразующим состояния на входе в состояния на выходе. Это отображение представляет собой сжатое статистическое описание результата взаимодействия системы на входе с ее окружением (шумом). Свойство положительности гарантирует от появления отрицательных вероятностей, а наречие «вполне» означает, что положительность должна выполняться не только для самого канала T, но и для его расширений вида T T’, где T’ — любой другой канал, что в частности позволяет рассматривать многократное использование канала. Важнейшая характеристика квантового канала — его классическая пропускная способность C(T), т.е. предельная максимальная скорость безошибочной передачи классических сообщений при использовании оптимального кодирования/декодирования длинных сообщений. Из упомянутого выше энтропийного неравенства вытекает, что количество передаваемой классической информации не может быть больше, чем log d, где d — размерность пространства квантового носителя информации. Таким образом, то обстоятельство, что любое гильбертово пространство содержит бесконечно много различных векторов состояний, не помогает передать неограниченное количество информации: чем больше состояний используется для передачи, тем они ближе друг к другу и, следовательно, неразличимее.

    Однако, как показали американские ученые Чарльз Беннетт и Питер Шор, классическая пропускная способность канала T может быть увеличена путем использования дополнительной сцепленности между входом и выходом канала. При этом сама по себе сцепленность не позволяет передавать информацию, т.к. это означало бы мгновенную передачу на конечное расстояние. Сцепленность играет роль «катализатора», выявляющего скрытые информационные ресурсы квантовой системы. Если T — канал без шума, то выигрыш в пропускной способности, обеспечиваемый сверхплотным кодированием, двукратен. Чем сильнее канал отличается от идеального, тем выигрыш больше, и для каналов с очень большим шумом может быть сколь угодно велик. Классическая пропускная способность с использованием сцепленного состояния Cea(T) — самая большая.
    На Европейском конгрессе математиков в Амстердаме квантовая теория информации выделена в специальное направление

    При передаче классической информации по квантовому каналу сообщение записывается в квантовом состоянии. Однако вся полнота информационного содержания не может быть сведена к классическому сообщению и заслуживает специального термина — квантовая информация, т.к. квантовое состояние содержит в себе информацию о статистике всевозможных, в том числе и взаимоисключающих (дополнительных) измерений системы. Количество квантовой информации измеряется величиной энтропии состояния. Принципиальное отличие квантовой информации от классической заключается в невозможности копирования. Простое рассуждение, основанное на линейности уравнений квантовой эволюции, показывает, что не существует «квантового ксерокса», т.е. физического устройства, позволяющего копировать произвольное квантовое состояние. Однако теория предсказывает возможность нетривиального способа передачи квантовой информации, при котором носитель состояния физически не передается, а пересылается лишь некоторая классическая информация (так называемая телепортация квантового состояния). Необходимым дополнительным ресурсом вновь становится сцепленность между входом и выходом канала связи. Свести передачу произвольного квантового состояния только к передаче классической информации без использования дополнительного квантового ресурса невозможно: поскольку классическая информация копируема, это означало бы возможность копирования и квантовой информации.

    Квантовая пропускная способность Q(T) — это предельное максимальное количество квантовой информации, которое может быть сколь угодно точно передано каналом T. Есть глубокая аналогия между квантовым каналом и каналом с подслушивателем, причем в квантовом случае роль перехватчика информации играет окружение рассматриваемой системы. Величина Q(T) тесно связана с криптографическими характеристиками канала, такими как пропускная способность для секретной передачи классической информации Cp(T) и скорость распределения случайного ключа. Она является самой маленькой из пропускных способностей, т.к. предъявляет к каналу наивысшие требования.

    Вычисление либо оценка величин Q(T), Cp(T), C(T), Cea(T) — это важная и трудная математическая задача. В свое время появление квантовой механики оказало мощное взаимообогащающее влияние на ряд областей математики: в первую очередь на теорию операторов, операторных алгебр, представлений групп.

    Процесс продолжается и сейчас, и в нем все большую роль играют достижения квантовой теории информации. Так, исследование сцепленности стимулировало прогресс в понимании геометрии тензорных произведений, а каналы и теоремы кодирования оказались тесно связаны со структурами положительности в операторных пространствах и алгебрах. Новый импульс получил некоммутативный анализ; даже в такой, казалось бы, хорошо изученной области, как теория матриц, появились новые яркие результаты и новые трудные и интересные проблемы. На Европейском конгрессе математиков 2008 г. в Амстердаме квантовая теория информации выделена в специальное направление, которому посвящен ряд приглашенных докладов.

    «Мезо»: на границе «микро» и «макро»

    Прогресс микроэлектроники и нанотехнологий приближается к рубежу, за которым игнорировать квантовую природу носителей информации будет уже невозможно. Элементы современной вычислительной техники лишь на два-три порядка превосходят характерные атомные размеры. Почетный председатель совета директоров и основатель корпорации Intel Гордон Мур считает, что на преодоление этой разницы уйдет всего 10–15 лет. Тогда волей-неволей придется искать новые решения, и фундаментальные результаты квантовой теории информации могут сыграть решающую роль.

    Квантовый компьютер — это гипотетическое вычислительное устройство, использующее специфически квантовые эффекты и поэтому намного превосходящее по своим возможностям любую классическую вычислительную машину. Его память (квантовый регистр) должна состоять из множества элементарных ячеек — кубитов, которые находятся в сцепленном состоянии, а операции предполагают управляемое квантовомеханическое взаимодействие между ними. Данные в процессе вычислений представляют собой квантовую информацию, которая по окончании процесса преобразуется в классическую путем измерения конечного состояния квантового регистра. Выигрыш в квантовых алгоритмах достигается за счет того, что при применении одной квантовой операции большое число коэффициентов суперпозиции квантовых состояний, которые в виртуальной форме содержат классическую информацию, преобразуется одновременно (квантовый параллелизм).

    Квантовый компьютер находится на грани между микро- и макромиром, чем и обусловлены трудности его воплощения. Основным техническим препятствием для реализации квантового компьютера является декогерентизация — распад квантовых суперпозиций, обусловленный сверхчувствительностью микросистем к внешним воздействиям макромира. Если скорость декогерентизации не превосходит некоторого порогового значения, то применение квантовых кодов, исправляющих ошибки, теоретически позволяет сделать квантовые вычисления помехоустойчивыми. Однако при этом размер квантового регистра должен быть увеличен на порядки. Сейчас ведутся интенсивные поиски решения этих проблем: разработаны теоретические методы оптимизации архитектуры квантового компьютера, предложены схемы адиабатических вычислений, квантовых клеточных автоматов, вычислений, основанных на измерениях; обсуждается идея топологического квантового компьютера, физически устойчивого к ошибкам. Экспериментально исследуются модели кубитов, основанные на принципах ядерного магнитного резонанса, квантовой оптики и электродинамики, полупроводниковых квантовых точках, ионных ловушках, сверхпроводниковых мезо-структурах и т.д.

    Квантовая информатика стала новым междисциплинарным научным направлением на стыке физики, информатики и математики, которое поднимает новые важные вопросы и дает ключ к пониманию некоторых фундаментальных закономерностей Природы, до недавних пор остававшихся вне поля зрения исследователей. Ее теоретические разработки стимулируют как новые достижения в области математики, так и развитие экспериментальной физики, значительно расширяющее возможности манипулирования состояниями микросистем и потенциально важное для появления новых эффективных технологий.
     
    #56
  18. lotar

    lotar Ословед

    Репутация:
    175
    lotar, 19 июл 2008
    Криминалистика

    Новое достижение в криминалистике позволит повысить раскрываемость преступлений и вернуть на доследование старые дела, считавшиеся ранее безнадежными.


    Работа ученых-криминалистов из университета г. Лестер (Великобритания) при участии полиции графства Нортхемптоншир - возможно, самое большое достижение в дактилоскопии со времени ее появления. Исследователи обнаружили, что отпечатки пальцев на металлической поверхности остаются на долгие годы, и удалить их непросто - протирка, промывка водой с мылом и даже действие высоких температур не устраняют отпечатка. Точнее сказать, коррозионного следа, который оставляют пальцы на поверхности металла.

    След проявляется при подаче небольшого потенциала на металлическую поверхность, посыпанную тонкодисперсным порошком проводящего материала (аналогичного тонеру в копирах или принтерах). Таким способом можно проявить отпечаток на самых разных металлических поверхностях, в частности, на поверхности огнестрельного оружия или даже гильзы, которую брали в руки.

    Методика разработана почетным членом университета г. Лестер д-ром Джоном Бондом (John Bond), который в настоящее время является научным руководителем в полиции графства Нортхемптоншир. Статья д-ра Бонда будет опубликована в American Journal of Forensic Science.

    В следующем учебном году английский университет намерен продолжить изучение новой методики и исследовать различные аспекты коррозии металлов при контакте с кожей человека, сообщает PhysOrg.
     
    #57
  19. lotar

    lotar Ословед

    Репутация:
    175
    lotar, 19 июл 2008
    Нанотехнологии

    Нанотехнологи готовят замену полупроводниковым элементам памят
    Наноэлектромеханические устройства памяти обретают зримые перспективы.

    Устройства для обработки и хранения информации в компьютерах приблизились к порогу миниатюризации, и исследователи в различных странах ищут пути дальнейшего совершенствования этих устройств. В работе проф. Г.Амаратунга (Gehan Amaratunga) и его коллег из Кембриджского университета, опубликованной в журнале Nature Nanotechnology, описан вариант ячейки памяти наномасштаба, в котором зарядом конденсатора управляет наноэлектромеханическое устройство на основе многослойных углеродных нанотрубок.

    Нанотрубки в опытах английских ученых расположены вертикально, их нижний конец присоединен к кремниевой пластине, покрытой слоем никеля, который играет роль катализатора образовании нанотрубок при осаждении из газа, содержащего атомы углерода. Продолжительность этого процесса определяет длину нанотрубки, а она, в свою очередь, задает такие механические параметры, как жесткость и резонансная частота. Устройство состоит из неподвижной нанотрубки и расположенной рядом колеблющейся нанотрубки. Вокруг неподвижной нанотрубки формируется цилиндрический конденсатор, который служит для хранения заряда. Незаряженный конденсатор соответствует состоянию 0, заряженный - 1, и конденсатор, таким образом, хранит один бит информации.

    Заряд или разряд конденсатора происходит при соприкосновении колеблющейся нанотрубки c неподвижной, при этом резонансная частота определяет в итоге скорость обмена данных, а жесткость нанотрубки связана с тем, какой заряд требуется для отклонения нанотрубки до соприкосновения с неподвижным элементом. Согласно оценкам британских ученых, быстродействие в подобных наноэлектромеханических устройствах выше, а энергопотребление ниже, чем у современных ячеек DRAM-памяти, где используют конденсаторы на основе перехода КМОП-транзистора. Вертикальное расположение нанотрубок позволит достичь очень плотной упаковки модулей памяти. При создании подобной ячейки памяти не используются процессы фотолитографии, значит, и производство модулей памяти будет недорогим.

    Различные варианты применения нанотрубок для создания ячеек памяти предлагали и ранее, в том числе и ученые из Кембриджа, но лишь теперь появилась возможность создавать нанотрубки в нужном количестве и с заранее заданными свойствами и определенным местом расположения на подложке, при этом точность этих процессов достаточна для производства микросхем с высокой степенью интеграции, сообщает PhysOrg.
     
    #58
  20. lotar

    lotar Ословед

    Репутация:
    175
    lotar, 19 июл 2008
    Исследован новый механизм передачи энергии

    Исследован новый механизм передачи энергии

    Ученые из университета Бристоля описали новый механизм передачи энергии, который может играть важную роль в химических реакциях, протекающих в атмосфере.

    Д-р Стюарт Гривз (Stuart Greaves) и его коллеги исследовали столкновение быстрых атомов водорода с охлажденными в сверхзвуковой струе молекулами D2. Ученые обнаружили, что при неупругих столкновениях атомов с молекулами последние в основном рассеиваются в прямом направлении, а не назад, как следовало бы ожидать, сообщает ScienceDaily.

    Причина этого, по мнению ученых, заключается в том, что даже при скользящем столкновении атома водорода с молекулой D2 он может притягивать к себе ближайший атом дейтерия, в результате чего молекула будет перемещаться вперед. Ученые считают, что полученные ими результаты могут использоваться при исследовании реакций, протекающих в атмосфере, а также в живых организмах.
     
    #59
  21. lotar

    lotar Ословед

    Репутация:
    175
    lotar, 19 июл 2008
    Электроника

    Интерференционная литография: получено рекордное разрешение
    Новый вариант литографии ускорит появление микросхем следующего поколения.

    Исследователи из Массачусетского технологического института (MIT) добились значительного прогресса в технологии литографии, используемой в производстве микросхем и других электронных устройств. Им удалось получить на поверхности кремниевой подложки линейные структуры шириной 25 нм, разделенные промежутком в 25 нм.

    В настоящее время для массового производства самых современных микросхем используют технологию, обеспечивающую минимальное расстояние между проводниками в 65 нм. Компания Intel недавно сообщила о предстоящем в 2009 г. вводе в эксплуатацию завода, где будет использоваться 33-нанометровый технологический процесс. Кроме того, Intel представила прогноз о переходе на 25-нанометровый процесс к 2013-2015 гг.

    Методика, разработанная в MIT, может ускорить появление новых чипов, поскольку не использует методы иммерсионной литографии и дорогостоящее оборудование, требуемое для проведения оптической литографии в этом диапазоне размеров. Для создания периодических структур в наномасштабе исследователи из MIT применили метод интерференционной литографии, который изучается уже не один год во многих лабораториях мира (в России, в частности, в этом направлении работают группы из Института прикладной физики РАН и Института физики микроструктур РАН).

    Успех нового варианта интерференционной литографии обеспечила "нанолинейка", созданная двумя студентами MIT. Студенты использовали генератор акустических волн с частотой 100 МГц для управления лазерным излучением, формирующим литографический рисунок на поверхности кремниевой подложки, при этом система позволяла отклонять лазерный луч и менять частоту излучения при помощи нового алгоритма высокоточного определения фазы.

    Разработанная система, получившая название интерференционной литографии с лучевым сканированием (scanning-beam interference lithography, SBIL), способна создавать рисунок на большой поверхности. Марк Шаттенбург (Mark Schattenburg), один из авторов работы, заявил, что теперь формирование изображения с заданной точностью не является лимитирующим этапом процесса, и точность определяется уже свойствами самого материала подложки (неровностью боковых стенок). Однако уже сейчас просматриваются варианты преодоления этих недостатков.

    Работа ученых из Бостона принята к публикации в журнале Optics Letters. Сообщение о разработке было сделано недавно на международной конференции по электронным, ионным и фотонным лучевым технологиям в г. Портленд (США), сообщает пресс-релиз MIT.
     
    #60
Загрузка...